Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Déterminez la dérivée première.
Étape 1.1.1
Différenciez en utilisant la règle d’enchaînement, qui indique que est où et .
Étape 1.1.1.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 1.1.1.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.1.1.3
Remplacez toutes les occurrences de par .
Étape 1.1.2
Différenciez.
Étape 1.1.2.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.1.2.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.1.2.3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.2.4
Simplifiez l’expression.
Étape 1.1.2.4.1
Additionnez et .
Étape 1.1.2.4.2
Multipliez par .
Étape 1.2
Déterminez la dérivée seconde.
Étape 1.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.2.2
Différenciez en utilisant la règle d’enchaînement, qui indique que est où et .
Étape 1.2.2.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 1.2.2.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.2.2.3
Remplacez toutes les occurrences de par .
Étape 1.2.3
Différenciez.
Étape 1.2.3.1
Multipliez par .
Étape 1.2.3.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.2.3.3
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.2.3.4
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.2.3.5
Simplifiez l’expression.
Étape 1.2.3.5.1
Additionnez et .
Étape 1.2.3.5.2
Multipliez par .
Étape 1.3
La dérivée seconde de par rapport à est .
Étape 2
Étape 2.1
Définissez la dérivée seconde égale à .
Étape 2.2
Divisez chaque terme dans par et simplifiez.
Étape 2.2.1
Divisez chaque terme dans par .
Étape 2.2.2
Simplifiez le côté gauche.
Étape 2.2.2.1
Annulez le facteur commun de .
Étape 2.2.2.1.1
Annulez le facteur commun.
Étape 2.2.2.1.2
Divisez par .
Étape 2.2.3
Simplifiez le côté droit.
Étape 2.2.3.1
Divisez par .
Étape 2.3
Définissez le égal à .
Étape 2.4
Ajoutez aux deux côtés de l’équation.
Étape 3
Étape 3.1
Remplacez dans pour déterminer la valeur de .
Étape 3.1.1
Remplacez la variable par dans l’expression.
Étape 3.1.2
Simplifiez le résultat.
Étape 3.1.2.1
Soustrayez de .
Étape 3.1.2.2
L’élévation de à toute puissance positive produit .
Étape 3.1.2.3
La réponse finale est .
Étape 3.2
Le point trouvé en remplaçant dans est . Ce point peut être un point d’inflexion.
Étape 4
Divisez en intervalles autour des points qui pourraient potentiellement être des points d’inflexion.
Étape 5
Étape 5.1
Remplacez la variable par dans l’expression.
Étape 5.2
Simplifiez le résultat.
Étape 5.2.1
Soustrayez de .
Étape 5.2.2
Élevez à la puissance .
Étape 5.2.3
Multipliez par .
Étape 5.2.4
La réponse finale est .
Étape 5.3
Sur , la dérivée seconde est . Comme elle est positive, la dérivée seconde augmente sur l’intervalle .
Augmente sur depuis
Augmente sur depuis
Étape 6
Étape 6.1
Remplacez la variable par dans l’expression.
Étape 6.2
Simplifiez le résultat.
Étape 6.2.1
Soustrayez de .
Étape 6.2.2
Élevez à la puissance .
Étape 6.2.3
Multipliez par .
Étape 6.2.4
La réponse finale est .
Étape 6.3
Sur , la dérivée seconde est . Comme elle est positive, la dérivée seconde augmente sur l’intervalle .
Augmente sur depuis
Augmente sur depuis
Étape 7
Un point d’inflexion est un point sur une courbe sur lequel la concavité passe du signe plus au signe moins ou du signe moins au signe plus. Aucun point du graphe ne respecte ces exigences.
Aucun point d’inflexion