Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Déterminez la dérivée première.
Étape 1.1.1
Différenciez en utilisant la règle de produit qui indique que est où et .
Étape 1.1.2
Différenciez en utilisant la règle d’enchaînement, qui indique que est où et .
Étape 1.1.2.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 1.1.2.2
Différenciez en utilisant la règle exponentielle qui indique que est où =.
Étape 1.1.2.3
Remplacez toutes les occurrences de par .
Étape 1.1.3
Différenciez.
Étape 1.1.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.3.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.1.3.3
Simplifiez l’expression.
Étape 1.1.3.3.1
Multipliez par .
Étape 1.1.3.3.2
Déplacez à gauche de .
Étape 1.1.3.3.3
Réécrivez comme .
Étape 1.1.3.4
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.1.3.5
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.1.3.6
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.3.7
Additionnez et .
Étape 1.1.4
Simplifiez
Étape 1.1.4.1
Appliquez la propriété distributive.
Étape 1.1.4.2
Appliquez la propriété distributive.
Étape 1.1.4.3
Multipliez par .
Étape 1.1.4.4
Remettez les termes dans l’ordre.
Étape 1.1.4.5
Remettez les facteurs dans l’ordre dans .
Étape 1.2
La dérivée première de par rapport à est .
Étape 2
Étape 2.1
Définissez la dérivée première égale à .
Étape 2.2
Factorisez le côté gauche de l’équation.
Étape 2.2.1
Factorisez à partir de .
Étape 2.2.1.1
Factorisez à partir de .
Étape 2.2.1.2
Factorisez à partir de .
Étape 2.2.1.3
Factorisez à partir de .
Étape 2.2.1.4
Factorisez à partir de .
Étape 2.2.1.5
Factorisez à partir de .
Étape 2.2.2
Factorisez.
Étape 2.2.2.1
Factorisez par regroupement.
Étape 2.2.2.1.1
Pour un polynôme de la forme , réécrivez le point milieu comme la somme de deux termes dont le produit est et dont la somme est .
Étape 2.2.2.1.1.1
Factorisez à partir de .
Étape 2.2.2.1.1.2
Réécrivez comme plus
Étape 2.2.2.1.1.3
Appliquez la propriété distributive.
Étape 2.2.2.1.2
Factorisez le plus grand facteur commun à partir de chaque groupe.
Étape 2.2.2.1.2.1
Regroupez les deux premiers termes et les deux derniers termes.
Étape 2.2.2.1.2.2
Factorisez le plus grand facteur commun à partir de chaque groupe.
Étape 2.2.2.1.3
Factorisez le polynôme en factorisant le plus grand facteur commun, .
Étape 2.2.2.2
Supprimez les parenthèses inutiles.
Étape 2.3
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 2.4
Définissez égal à et résolvez .
Étape 2.4.1
Définissez égal à .
Étape 2.4.2
Résolvez pour .
Étape 2.4.2.1
Prenez le logarithme naturel des deux côtés de l’équation pour retirer la variable de l’exposant.
Étape 2.4.2.2
L’équation ne peut pas être résolue car est indéfini.
Indéfini
Étape 2.4.2.3
Il n’y a pas de solution pour
Aucune solution
Aucune solution
Aucune solution
Étape 2.5
Définissez égal à et résolvez .
Étape 2.5.1
Définissez égal à .
Étape 2.5.2
Résolvez pour .
Étape 2.5.2.1
Ajoutez aux deux côtés de l’équation.
Étape 2.5.2.2
Divisez chaque terme dans par et simplifiez.
Étape 2.5.2.2.1
Divisez chaque terme dans par .
Étape 2.5.2.2.2
Simplifiez le côté gauche.
Étape 2.5.2.2.2.1
La division de deux valeurs négatives produit une valeur positive.
Étape 2.5.2.2.2.2
Divisez par .
Étape 2.5.2.2.3
Simplifiez le côté droit.
Étape 2.5.2.2.3.1
Divisez par .
Étape 2.6
Définissez égal à et résolvez .
Étape 2.6.1
Définissez égal à .
Étape 2.6.2
Ajoutez aux deux côtés de l’équation.
Étape 2.7
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 3
Les valeurs qui rendent la dérivée égale à sont .
Étape 4
Divisez en intervalles distincts autour des valeurs qui rendent la dérivée ou indéfinie.
Étape 5
Étape 5.1
Remplacez la variable par dans l’expression.
Étape 5.2
Simplifiez le résultat.
Étape 5.2.1
Simplifiez chaque terme.
Étape 5.2.1.1
Élevez à la puissance .
Étape 5.2.1.2
Multipliez par .
Étape 5.2.1.3
Multipliez par .
Étape 5.2.1.4
Multipliez par .
Étape 5.2.1.5
Multipliez par .
Étape 5.2.1.6
Multipliez par .
Étape 5.2.2
Simplifiez en ajoutant des termes.
Étape 5.2.2.1
Soustrayez de .
Étape 5.2.2.2
Additionnez et .
Étape 5.2.3
La réponse finale est .
Étape 5.3
Sur la dérivée est . Comme elle est négative, la fonction diminue sur .
Diminue sur depuis
Diminue sur depuis
Étape 6
Étape 6.1
Remplacez la variable par dans l’expression.
Étape 6.2
Simplifiez le résultat.
Étape 6.2.1
Simplifiez chaque terme.
Étape 6.2.1.1
Un à n’importe quelle puissance est égal à un.
Étape 6.2.1.2
Multipliez par .
Étape 6.2.1.3
Multipliez par .
Étape 6.2.1.4
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 6.2.1.5
Réécrivez comme .
Étape 6.2.1.6
Multipliez par .
Étape 6.2.1.7
Multipliez par .
Étape 6.2.1.8
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 6.2.1.9
Associez et .
Étape 6.2.1.10
Multipliez par .
Étape 6.2.1.11
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 6.2.1.12
Associez et .
Étape 6.2.2
Associez les fractions.
Étape 6.2.2.1
Associez les numérateurs sur le dénominateur commun.
Étape 6.2.2.2
Simplifiez en ajoutant des nombres.
Étape 6.2.2.2.1
Additionnez et .
Étape 6.2.2.2.2
Additionnez et .
Étape 6.2.3
La réponse finale est .
Étape 6.3
Sur la dérivée est . Comme elle est positive, la fonction augmente sur .
Augmente sur depuis
Augmente sur depuis
Étape 7
Étape 7.1
Remplacez la variable par dans l’expression.
Étape 7.2
Simplifiez le résultat.
Étape 7.2.1
Simplifiez chaque terme.
Étape 7.2.1.1
Élevez à la puissance .
Étape 7.2.1.2
Multipliez par .
Étape 7.2.1.3
Multipliez par .
Étape 7.2.1.4
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 7.2.1.5
Associez et .
Étape 7.2.1.6
Placez le signe moins devant la fraction.
Étape 7.2.1.7
Multipliez par .
Étape 7.2.1.8
Multipliez par .
Étape 7.2.1.9
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 7.2.1.10
Associez et .
Étape 7.2.1.11
Multipliez par .
Étape 7.2.1.12
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 7.2.1.13
Associez et .
Étape 7.2.2
Associez les fractions.
Étape 7.2.2.1
Associez les numérateurs sur le dénominateur commun.
Étape 7.2.2.2
Simplifiez l’expression.
Étape 7.2.2.2.1
Additionnez et .
Étape 7.2.2.2.2
Additionnez et .
Étape 7.2.2.2.3
Placez le signe moins devant la fraction.
Étape 7.2.3
La réponse finale est .
Étape 7.3
Sur la dérivée est . Comme elle est négative, la fonction diminue sur .
Diminue sur depuis
Diminue sur depuis
Étape 8
Indiquez les intervalles sur lesquels la fonction est croissante et décroissante.
Augmente sur :
Diminue sur :
Étape 9