Calcul infinitésimal Exemples

Trouver où il y a croissance et décroissance à l'aide des Dérivées ( logarithme népérien de x)/x
Étape 1
Écrivez comme une fonction.
Étape 2
Déterminez la dérivée première.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Déterminez la dérivée première.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.1
Différenciez en utilisant la règle du quotient qui indique que est et .
Étape 2.1.2
La dérivée de par rapport à est .
Étape 2.1.3
Différenciez en utilisant la règle de puissance.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.3.1
Associez et .
Étape 2.1.3.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 2.1.3.2.1
Annulez le facteur commun.
Étape 2.1.3.2.2
Réécrivez l’expression.
Étape 2.1.3.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.1.3.4
Multipliez par .
Étape 2.2
La dérivée première de par rapport à est .
Étape 3
Définissez la dérivée première égale à puis résolvez l’équation .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Définissez la dérivée première égale à .
Étape 3.2
Définissez le numérateur égal à zéro.
Étape 3.3
Résolvez l’équation pour .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1
Soustrayez des deux côtés de l’équation.
Étape 3.3.2
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.2.1
Divisez chaque terme dans par .
Étape 3.3.2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.2.2.1
La division de deux valeurs négatives produit une valeur positive.
Étape 3.3.2.2.2
Divisez par .
Étape 3.3.2.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.2.3.1
Divisez par .
Étape 3.3.3
Pour résoudre , réécrivez l’équation en utilisant les propriétés des logarithmes.
Étape 3.3.4
Réécrivez en forme exponentielle en utilisant la définition d’un logarithme. Si et sont des nombres réels positifs et , alors est équivalent à .
Étape 3.3.5
Réécrivez l’équation comme .
Étape 4
Les valeurs qui rendent la dérivée égale à sont .
Étape 5
Déterminez où la dérivée est indéfinie.
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Définissez le dénominateur dans égal à pour déterminer où l’expression est indéfinie.
Étape 5.2
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 5.2.2
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 5.2.2.1
Réécrivez comme .
Étape 5.2.2.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 5.2.2.3
Plus ou moins est .
Étape 5.3
Définissez l’argument dans inférieur ou égal à pour déterminer où l’expression est indéfinie.
Étape 5.4
L’équation est indéfinie là où le dénominateur est égal à , l’argument d’une racine carrée est inférieur à ou l’argument d’un logarithme est inférieur ou égal à .
Étape 6
Divisez en intervalles distincts autour des valeurs qui rendent la dérivée ou indéfinie.
Étape 7
Excluez les intervalles qui ne sont pas dans le domaine.
Étape 8
Remplacez une valeur de l’intervalle dans la dérivée afin de déterminer si la fonction est croissante ou décroissante.
Appuyez ici pour voir plus d’étapes...
Étape 8.1
Remplacez la variable par dans l’expression.
Étape 8.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 8.2.1
Élevez à la puissance .
Étape 8.2.2
Remplacez par une approximation.
Étape 8.2.3
La base logarithmique de est approximativement .
Étape 8.2.4
Multipliez par .
Étape 8.2.5
Soustrayez de .
Étape 8.2.6
Divisez par .
Étape 8.2.7
La réponse finale est .
Étape 8.3
Sur la dérivée est . Comme elle est positive, la fonction augmente sur .
Augmente sur depuis
Augmente sur depuis
Étape 9
Excluez les intervalles qui ne sont pas dans le domaine.
Étape 10
Remplacez une valeur de l’intervalle dans la dérivée afin de déterminer si la fonction est croissante ou décroissante.
Appuyez ici pour voir plus d’étapes...
Étape 10.1
Remplacez la variable par dans l’expression.
Étape 10.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 10.2.1
Élevez à la puissance .
Étape 10.2.2
Remplacez par une approximation.
Étape 10.2.3
La base logarithmique de est approximativement .
Étape 10.2.4
Multipliez par .
Étape 10.2.5
Soustrayez de .
Étape 10.2.6
Divisez par .
Étape 10.2.7
La réponse finale est .
Étape 10.3
Sur la dérivée est . Comme elle est négative, la fonction diminue sur .
Diminue sur depuis
Diminue sur depuis
Étape 11
Indiquez les intervalles sur lesquels la fonction est croissante et décroissante.
Augmente sur :
Diminue sur :
Étape 12