Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Set each solution of as a function of .
Étape 2
Étape 2.1
Différenciez les deux côtés de l’équation.
Étape 2.2
Différenciez le côté gauche de l’équation.
Étape 2.2.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.2.2
Évaluez .
Étape 2.2.2.1
Différenciez en utilisant la règle d’enchaînement, qui indique que est où et .
Étape 2.2.2.1.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 2.2.2.1.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.2.2.1.3
Remplacez toutes les occurrences de par .
Étape 2.2.2.2
Réécrivez comme .
Étape 2.2.3
Évaluez .
Étape 2.2.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2.3.2
Réécrivez comme .
Étape 2.3
Différenciez le côté droit de l’équation.
Étape 2.3.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.3.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.3.3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.3.4
Additionnez et .
Étape 2.4
Réformez l’équation en définissant le côté gauche égal au côté droit.
Étape 2.5
Résolvez .
Étape 2.5.1
Factorisez à partir de .
Étape 2.5.1.1
Factorisez à partir de .
Étape 2.5.1.2
Factorisez à partir de .
Étape 2.5.1.3
Factorisez à partir de .
Étape 2.5.2
Réécrivez comme .
Étape 2.5.3
Factorisez.
Étape 2.5.3.1
Les deux termes étant des carrés parfaits, factorisez à l’aide de la formule de la différence des carrés, où et .
Étape 2.5.3.2
Supprimez les parenthèses inutiles.
Étape 2.5.4
Divisez chaque terme dans par et simplifiez.
Étape 2.5.4.1
Divisez chaque terme dans par .
Étape 2.5.4.2
Simplifiez le côté gauche.
Étape 2.5.4.2.1
Annulez le facteur commun de .
Étape 2.5.4.2.1.1
Annulez le facteur commun.
Étape 2.5.4.2.1.2
Réécrivez l’expression.
Étape 2.5.4.2.2
Annulez le facteur commun de .
Étape 2.5.4.2.2.1
Annulez le facteur commun.
Étape 2.5.4.2.2.2
Réécrivez l’expression.
Étape 2.5.4.2.3
Annulez le facteur commun de .
Étape 2.5.4.2.3.1
Annulez le facteur commun.
Étape 2.5.4.2.3.2
Divisez par .
Étape 2.6
Remplacez par.
Étape 3
Étape 3.1
Définissez le numérateur égal à zéro.
Étape 3.2
Divisez chaque terme dans par et simplifiez.
Étape 3.2.1
Divisez chaque terme dans par .
Étape 3.2.2
Simplifiez le côté gauche.
Étape 3.2.2.1
Annulez le facteur commun de .
Étape 3.2.2.1.1
Annulez le facteur commun.
Étape 3.2.2.1.2
Divisez par .
Étape 3.2.3
Simplifiez le côté droit.
Étape 3.2.3.1
Divisez par .
Étape 4
Étape 4.1
Remplacez la variable par dans l’expression.
Étape 4.2
Simplifiez le résultat.
Étape 4.2.1
L’élévation de à toute puissance positive produit .
Étape 4.2.2
Soustrayez de .
Étape 4.2.3
La réponse finale est .
Étape 5
The horizontal tangent lines are
Étape 6