Calcul infinitésimal Exemples

Trouver où il y a croissance et décroissance à l'aide des Dérivées f(x)=x-4x^-2
Étape 1
Déterminez la dérivée première.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Déterminez la dérivée première.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1
Différenciez.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.1.1.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.1.2
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.2.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.1.2.3
Multipliez par .
Étape 1.1.3
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 1.1.3.1
Remettez les termes dans l’ordre.
Étape 1.1.3.2
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.3.2.1
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 1.1.3.2.2
Associez et .
Étape 1.2
La dérivée première de par rapport à est .
Étape 2
Définissez la dérivée première égale à puis résolvez l’équation .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Définissez la dérivée première égale à .
Étape 2.2
Soustrayez des deux côtés de l’équation.
Étape 2.3
Déterminez le plus petit dénominateur commun des termes dans l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Déterminer le plus petit dénominateur commun d’une liste d’expressions équivaut à déterminer le plus petit multiple commun des dénominateurs de ces valeurs.
Étape 2.3.2
Le plus petit multiple commun de toute expression est l’expression.
Étape 2.4
Multiplier chaque terme dans par afin d’éliminer les fractions.
Appuyez ici pour voir plus d’étapes...
Étape 2.4.1
Multipliez chaque terme dans par .
Étape 2.4.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 2.4.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 2.4.2.1.1
Annulez le facteur commun.
Étape 2.4.2.1.2
Réécrivez l’expression.
Étape 2.5
Résolvez l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 2.5.1
Réécrivez l’équation comme .
Étape 2.5.2
Soustrayez des deux côtés de l’équation.
Étape 2.5.3
Factorisez le côté gauche de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 2.5.3.1
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 2.5.3.1.1
Factorisez à partir de .
Étape 2.5.3.1.2
Réécrivez comme .
Étape 2.5.3.1.3
Factorisez à partir de .
Étape 2.5.3.2
Réécrivez comme .
Étape 2.5.3.3
Les deux termes étant des cubes parfaits, factorisez à l’aide de la formule de la somme des cubes, et .
Étape 2.5.3.4
Factorisez.
Appuyez ici pour voir plus d’étapes...
Étape 2.5.3.4.1
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 2.5.3.4.1.1
Multipliez par .
Étape 2.5.3.4.1.2
Élevez à la puissance .
Étape 2.5.3.4.2
Supprimez les parenthèses inutiles.
Étape 2.5.4
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 2.5.5
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 2.5.5.1
Définissez égal à .
Étape 2.5.5.2
Soustrayez des deux côtés de l’équation.
Étape 2.5.6
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 2.5.6.1
Définissez égal à .
Étape 2.5.6.2
Résolvez pour .
Appuyez ici pour voir plus d’étapes...
Étape 2.5.6.2.1
Utilisez la formule quadratique pour déterminer les solutions.
Étape 2.5.6.2.2
Remplacez les valeurs , et dans la formule quadratique et résolvez pour .
Étape 2.5.6.2.3
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 2.5.6.2.3.1
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 2.5.6.2.3.1.1
Élevez à la puissance .
Étape 2.5.6.2.3.1.2
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 2.5.6.2.3.1.2.1
Multipliez par .
Étape 2.5.6.2.3.1.2.2
Multipliez par .
Étape 2.5.6.2.3.1.3
Soustrayez de .
Étape 2.5.6.2.3.1.4
Réécrivez comme .
Étape 2.5.6.2.3.1.5
Réécrivez comme .
Étape 2.5.6.2.3.1.6
Réécrivez comme .
Étape 2.5.6.2.3.1.7
Réécrivez comme .
Appuyez ici pour voir plus d’étapes...
Étape 2.5.6.2.3.1.7.1
Factorisez à partir de .
Étape 2.5.6.2.3.1.7.2
Réécrivez comme .
Étape 2.5.6.2.3.1.8
Extrayez les termes de sous le radical.
Étape 2.5.6.2.3.1.9
Déplacez à gauche de .
Étape 2.5.6.2.3.2
Multipliez par .
Étape 2.5.6.2.3.3
Simplifiez .
Étape 2.5.6.2.4
Simplifiez l’expression pour résoudre la partie du .
Appuyez ici pour voir plus d’étapes...
Étape 2.5.6.2.4.1
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 2.5.6.2.4.1.1
Élevez à la puissance .
Étape 2.5.6.2.4.1.2
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 2.5.6.2.4.1.2.1
Multipliez par .
Étape 2.5.6.2.4.1.2.2
Multipliez par .
Étape 2.5.6.2.4.1.3
Soustrayez de .
Étape 2.5.6.2.4.1.4
Réécrivez comme .
Étape 2.5.6.2.4.1.5
Réécrivez comme .
Étape 2.5.6.2.4.1.6
Réécrivez comme .
Étape 2.5.6.2.4.1.7
Réécrivez comme .
Appuyez ici pour voir plus d’étapes...
Étape 2.5.6.2.4.1.7.1
Factorisez à partir de .
Étape 2.5.6.2.4.1.7.2
Réécrivez comme .
Étape 2.5.6.2.4.1.8
Extrayez les termes de sous le radical.
Étape 2.5.6.2.4.1.9
Déplacez à gauche de .
Étape 2.5.6.2.4.2
Multipliez par .
Étape 2.5.6.2.4.3
Simplifiez .
Étape 2.5.6.2.4.4
Remplacez le par .
Étape 2.5.6.2.5
Simplifiez l’expression pour résoudre la partie du .
Appuyez ici pour voir plus d’étapes...
Étape 2.5.6.2.5.1
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 2.5.6.2.5.1.1
Élevez à la puissance .
Étape 2.5.6.2.5.1.2
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 2.5.6.2.5.1.2.1
Multipliez par .
Étape 2.5.6.2.5.1.2.2
Multipliez par .
Étape 2.5.6.2.5.1.3
Soustrayez de .
Étape 2.5.6.2.5.1.4
Réécrivez comme .
Étape 2.5.6.2.5.1.5
Réécrivez comme .
Étape 2.5.6.2.5.1.6
Réécrivez comme .
Étape 2.5.6.2.5.1.7
Réécrivez comme .
Appuyez ici pour voir plus d’étapes...
Étape 2.5.6.2.5.1.7.1
Factorisez à partir de .
Étape 2.5.6.2.5.1.7.2
Réécrivez comme .
Étape 2.5.6.2.5.1.8
Extrayez les termes de sous le radical.
Étape 2.5.6.2.5.1.9
Déplacez à gauche de .
Étape 2.5.6.2.5.2
Multipliez par .
Étape 2.5.6.2.5.3
Simplifiez .
Étape 2.5.6.2.5.4
Remplacez le par .
Étape 2.5.6.2.6
La réponse finale est la combinaison des deux solutions.
Étape 2.5.7
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 3
Les valeurs qui rendent la dérivée égale à sont .
Étape 4
Déterminez où la dérivée est indéfinie.
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Définissez le dénominateur dans égal à pour déterminer où l’expression est indéfinie.
Étape 4.2
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Étape 4.2.2
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.2.1
Réécrivez comme .
Étape 4.2.2.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels.
Étape 5
Divisez en intervalles distincts autour des valeurs qui rendent la dérivée ou indéfinie.
Étape 6
Remplacez une valeur de l’intervalle dans la dérivée afin de déterminer si la fonction est croissante ou décroissante.
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Remplacez la variable par dans l’expression.
Étape 6.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 6.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 6.2.1.1
Élevez à la puissance .
Étape 6.2.1.2
Placez le signe moins devant la fraction.
Étape 6.2.2
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 6.2.2.1
Écrivez comme une fraction avec un dénominateur commun.
Étape 6.2.2.2
Associez les numérateurs sur le dénominateur commun.
Étape 6.2.2.3
Additionnez et .
Étape 6.2.3
La réponse finale est .
Étape 6.3
Sur la dérivée est . Comme elle est positive, la fonction augmente sur .
Augmente sur depuis
Augmente sur depuis
Étape 7
Remplacez une valeur de l’intervalle dans la dérivée afin de déterminer si la fonction est croissante ou décroissante.
Appuyez ici pour voir plus d’étapes...
Étape 7.1
Remplacez la variable par dans l’expression.
Étape 7.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 7.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 7.2.1.1
Élevez à la puissance .
Étape 7.2.1.2
Divisez par .
Étape 7.2.2
Additionnez et .
Étape 7.2.3
La réponse finale est .
Étape 7.3
Sur la dérivée est . Comme elle est négative, la fonction diminue sur .
Diminue sur depuis
Diminue sur depuis
Étape 8
Remplacez une valeur de l’intervalle dans la dérivée afin de déterminer si la fonction est croissante ou décroissante.
Appuyez ici pour voir plus d’étapes...
Étape 8.1
Remplacez la variable par dans l’expression.
Étape 8.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 8.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 8.2.1.1
Un à n’importe quelle puissance est égal à un.
Étape 8.2.1.2
Divisez par .
Étape 8.2.2
Additionnez et .
Étape 8.2.3
La réponse finale est .
Étape 8.3
Sur la dérivée est . Comme elle est positive, la fonction augmente sur .
Augmente sur depuis
Augmente sur depuis
Étape 9
Indiquez les intervalles sur lesquels la fonction est croissante et décroissante.
Augmente sur :
Diminue sur :
Étape 10