Calcul infinitésimal Exemples

Trouver la dérivée de l’intégrale d/(dx) intégrale de 0 à x^2 de (1-t)/(1-t^2) par rapport à t
Étape 1
Simplifiez le dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Réécrivez comme .
Étape 1.2
Les deux termes étant des carrés parfaits, factorisez à l’aide de la formule de la différence des carrés, et .
Étape 2
Réduisez l’expression en annulant les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 2.1.1
Annulez le facteur commun.
Étape 2.1.2
Réécrivez l’expression.
Étape 2.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Annulez le facteur commun.
Étape 2.2.2
Réécrivez l’expression.
Étape 3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 4
Réécrivez comme .
Étape 5
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 6
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 6.2
Réorganisez les facteurs de .
Étape 6.3
Associez et .