Calcul infinitésimal Exemples

Trouver où il y a croissance et décroissance à l'aide des Dérivées f(x)=x^2e^(-x)
Étape 1
Déterminez la dérivée première.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Déterminez la dérivée première.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1
Différenciez en utilisant la règle de produit qui indique que est et .
Étape 1.1.2
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.2.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 1.1.2.2
Différenciez en utilisant la règle exponentielle qui indique que est =.
Étape 1.1.2.3
Remplacez toutes les occurrences de par .
Étape 1.1.3
Différenciez.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.3.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.1.3.3
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.3.3.1
Multipliez par .
Étape 1.1.3.3.2
Déplacez à gauche de .
Étape 1.1.3.3.3
Réécrivez comme .
Étape 1.1.3.4
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.1.4
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 1.1.4.1
Remettez les termes dans l’ordre.
Étape 1.1.4.2
Remettez les facteurs dans l’ordre dans .
Étape 1.2
La dérivée première de par rapport à est .
Étape 2
Définissez la dérivée première égale à puis résolvez l’équation .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Définissez la dérivée première égale à .
Étape 2.2
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Factorisez à partir de .
Étape 2.2.2
Factorisez à partir de .
Étape 2.2.3
Factorisez à partir de .
Étape 2.3
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 2.4
Définissez égal à .
Étape 2.5
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 2.5.1
Définissez égal à .
Étape 2.5.2
Résolvez pour .
Appuyez ici pour voir plus d’étapes...
Étape 2.5.2.1
Prenez le logarithme naturel des deux côtés de l’équation pour retirer la variable de l’exposant.
Étape 2.5.2.2
L’équation ne peut pas être résolue car est indéfini.
Indéfini
Étape 2.5.2.3
Il n’y a pas de solution pour
Aucune solution
Aucune solution
Aucune solution
Étape 2.6
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 2.6.1
Définissez égal à .
Étape 2.6.2
Résolvez pour .
Appuyez ici pour voir plus d’étapes...
Étape 2.6.2.1
Soustrayez des deux côtés de l’équation.
Étape 2.6.2.2
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 2.6.2.2.1
Divisez chaque terme dans par .
Étape 2.6.2.2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 2.6.2.2.2.1
La division de deux valeurs négatives produit une valeur positive.
Étape 2.6.2.2.2.2
Divisez par .
Étape 2.6.2.2.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 2.6.2.2.3.1
Divisez par .
Étape 2.7
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 3
Les valeurs qui rendent la dérivée égale à sont .
Étape 4
Divisez en intervalles distincts autour des valeurs qui rendent la dérivée ou indéfinie.
Étape 5
Remplacez une valeur de l’intervalle dans la dérivée afin de déterminer si la fonction est croissante ou décroissante.
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Remplacez la variable par dans l’expression.
Étape 5.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1.1
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1.1.1
Multipliez par .
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1.1.1.1
Élevez à la puissance .
Étape 5.2.1.1.1.2
Utilisez la règle de puissance pour associer des exposants.
Étape 5.2.1.1.2
Additionnez et .
Étape 5.2.1.2
Élevez à la puissance .
Étape 5.2.1.3
Multipliez par .
Étape 5.2.1.4
Simplifiez
Étape 5.2.1.5
Réécrivez comme .
Étape 5.2.1.6
Multipliez par .
Étape 5.2.1.7
Multipliez par .
Étape 5.2.2
Soustrayez de .
Étape 5.2.3
La réponse finale est .
Étape 5.3
Sur la dérivée est . Comme elle est négative, la fonction diminue sur .
Diminue sur depuis
Diminue sur depuis
Étape 6
Remplacez une valeur de l’intervalle dans la dérivée afin de déterminer si la fonction est croissante ou décroissante.
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Remplacez la variable par dans l’expression.
Étape 6.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 6.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 6.2.1.1
Un à n’importe quelle puissance est égal à un.
Étape 6.2.1.2
Multipliez par .
Étape 6.2.1.3
Multipliez par .
Étape 6.2.1.4
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 6.2.1.5
Réécrivez comme .
Étape 6.2.1.6
Multipliez par .
Étape 6.2.1.7
Multipliez par .
Étape 6.2.1.8
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 6.2.1.9
Associez et .
Étape 6.2.2
Associez les fractions.
Appuyez ici pour voir plus d’étapes...
Étape 6.2.2.1
Associez les numérateurs sur le dénominateur commun.
Étape 6.2.2.2
Additionnez et .
Étape 6.2.3
La réponse finale est .
Étape 6.3
Sur la dérivée est . Comme elle est positive, la fonction augmente sur .
Augmente sur depuis
Augmente sur depuis
Étape 7
Remplacez une valeur de l’intervalle dans la dérivée afin de déterminer si la fonction est croissante ou décroissante.
Appuyez ici pour voir plus d’étapes...
Étape 7.1
Remplacez la variable par dans l’expression.
Étape 7.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 7.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 7.2.1.1
Élevez à la puissance .
Étape 7.2.1.2
Multipliez par .
Étape 7.2.1.3
Multipliez par .
Étape 7.2.1.4
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 7.2.1.5
Associez et .
Étape 7.2.1.6
Placez le signe moins devant la fraction.
Étape 7.2.1.7
Multipliez par .
Étape 7.2.1.8
Multipliez par .
Étape 7.2.1.9
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 7.2.1.10
Associez et .
Étape 7.2.2
Associez les fractions.
Appuyez ici pour voir plus d’étapes...
Étape 7.2.2.1
Associez les numérateurs sur le dénominateur commun.
Étape 7.2.2.2
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 7.2.2.2.1
Additionnez et .
Étape 7.2.2.2.2
Placez le signe moins devant la fraction.
Étape 7.2.3
La réponse finale est .
Étape 7.3
Sur la dérivée est . Comme elle est négative, la fonction diminue sur .
Diminue sur depuis
Diminue sur depuis
Étape 8
Indiquez les intervalles sur lesquels la fonction est croissante et décroissante.
Augmente sur :
Diminue sur :
Étape 9