Calcul infinitésimal Exemples

Trouver l'aire sous la courbe f(x)=8x-24 ; [2,6]
;
Étape 1
Résolvez par substitution afin de déterminer l’intersection entre les courbes.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Éliminez les côtés égaux de chaque équation et associez.
Étape 1.2
Résolvez pour .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1
Ajoutez aux deux côtés de l’équation.
Étape 1.2.2
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.2.1
Divisez chaque terme dans par .
Étape 1.2.2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.2.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.2.2.1.1
Annulez le facteur commun.
Étape 1.2.2.2.1.2
Divisez par .
Étape 1.2.2.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.2.3.1
Divisez par .
Étape 1.3
Remplacez par .
Étape 1.4
La solution du système est l’ensemble complet de paires ordonnées qui sont des solutions valides.
Étape 2
L’aire de la région entre les courbes est définie comme l’intégrale de la courbe supérieure moins l’intégrale de la courbe inférieure sur chaque région. Les régions sont déterminées par les points d’intersection des courbes. Cela peut être fait de manière algébrique ou graphique.
Étape 3
Intégrez pour déterminer l’aire entre et .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Associez les intégrales en une intégrale unique.
Étape 3.2
Soustrayez de .
Étape 3.3
Appliquez la propriété distributive.
Étape 3.4
Multipliez.
Appuyez ici pour voir plus d’étapes...
Étape 3.4.1
Multipliez par .
Étape 3.4.2
Multipliez par .
Étape 3.5
Séparez l’intégrale unique en plusieurs intégrales.
Étape 3.6
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 3.7
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 3.8
Associez et .
Étape 3.9
Appliquez la règle de la constante.
Étape 3.10
Remplacez et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 3.10.1
Évaluez sur et sur .
Étape 3.10.2
Évaluez sur et sur .
Étape 3.10.3
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 3.10.3.1
Élevez à la puissance .
Étape 3.10.3.2
Élevez à la puissance .
Étape 3.10.3.3
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 3.10.3.3.1
Factorisez à partir de .
Étape 3.10.3.3.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 3.10.3.3.2.1
Factorisez à partir de .
Étape 3.10.3.3.2.2
Annulez le facteur commun.
Étape 3.10.3.3.2.3
Réécrivez l’expression.
Étape 3.10.3.3.2.4
Divisez par .
Étape 3.10.3.4
Multipliez par .
Étape 3.10.3.5
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 3.10.3.6
Associez et .
Étape 3.10.3.7
Associez les numérateurs sur le dénominateur commun.
Étape 3.10.3.8
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 3.10.3.8.1
Multipliez par .
Étape 3.10.3.8.2
Soustrayez de .
Étape 3.10.3.9
Associez et .
Étape 3.10.3.10
Multipliez par .
Étape 3.10.3.11
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 3.10.3.11.1
Factorisez à partir de .
Étape 3.10.3.11.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 3.10.3.11.2.1
Factorisez à partir de .
Étape 3.10.3.11.2.2
Annulez le facteur commun.
Étape 3.10.3.11.2.3
Réécrivez l’expression.
Étape 3.10.3.11.2.4
Divisez par .
Étape 3.10.3.12
Multipliez par .
Étape 3.10.3.13
Multipliez par .
Étape 3.10.3.14
Soustrayez de .
Étape 3.10.3.15
Additionnez et .
Étape 4
L’aire de la région entre les courbes est définie comme l’intégrale de la courbe supérieure moins l’intégrale de la courbe inférieure sur chaque région. Les régions sont déterminées par les points d’intersection des courbes. Cela peut être fait de manière algébrique ou graphique.
Étape 5
Intégrez pour déterminer l’aire entre et .
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Associez les intégrales en une intégrale unique.
Étape 5.2
Soustrayez de .
Étape 5.3
Séparez l’intégrale unique en plusieurs intégrales.
Étape 5.4
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 5.5
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 5.6
Associez et .
Étape 5.7
Appliquez la règle de la constante.
Étape 5.8
Remplacez et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 5.8.1
Évaluez sur et sur .
Étape 5.8.2
Évaluez sur et sur .
Étape 5.8.3
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 5.8.3.1
Élevez à la puissance .
Étape 5.8.3.2
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 5.8.3.2.1
Factorisez à partir de .
Étape 5.8.3.2.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 5.8.3.2.2.1
Factorisez à partir de .
Étape 5.8.3.2.2.2
Annulez le facteur commun.
Étape 5.8.3.2.2.3
Réécrivez l’expression.
Étape 5.8.3.2.2.4
Divisez par .
Étape 5.8.3.3
Élevez à la puissance .
Étape 5.8.3.4
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 5.8.3.5
Associez et .
Étape 5.8.3.6
Associez les numérateurs sur le dénominateur commun.
Étape 5.8.3.7
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 5.8.3.7.1
Multipliez par .
Étape 5.8.3.7.2
Soustrayez de .
Étape 5.8.3.8
Associez et .
Étape 5.8.3.9
Multipliez par .
Étape 5.8.3.10
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 5.8.3.10.1
Factorisez à partir de .
Étape 5.8.3.10.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 5.8.3.10.2.1
Factorisez à partir de .
Étape 5.8.3.10.2.2
Annulez le facteur commun.
Étape 5.8.3.10.2.3
Réécrivez l’expression.
Étape 5.8.3.10.2.4
Divisez par .
Étape 5.8.3.11
Multipliez par .
Étape 5.8.3.12
Multipliez par .
Étape 5.8.3.13
Additionnez et .
Étape 5.8.3.14
Soustrayez de .
Étape 6
Additionnez et .
Étape 7