Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Écrivez comme une fonction.
Étape 2
La fonction peut être trouvée en déterminant l’intégrale infinie de la dérivée .
Étape 3
Définissez l’intégrale à résoudre.
Étape 4
Séparez l’intégrale unique en plusieurs intégrales.
Étape 5
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 6
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 7
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 8
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 9
Étape 9.1
Associez et .
Étape 9.2
Associez et .
Étape 9.3
Placez sur le dénominateur en utilisant la règle de l’exposant négatif .
Étape 10
Comme la dérivée de est , l’intégrale de est .
Étape 11
Étape 11.1
Simplifiez
Étape 11.2
Remettez les termes dans l’ordre.
Étape 12
La réponse est la dérivée première de la fonction .