Calcul infinitésimal Exemples

Trouver la primitive ( logarithme népérien de x)/(x^5)
Étape 1
Écrivez comme une fonction.
Étape 2
La fonction peut être trouvée en déterminant l’intégrale infinie de la dérivée .
Étape 3
Définissez l’intégrale à résoudre.
Étape 4
Appliquez les règles de base des exposants.
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Retirez du dénominateur en l’élevant à la puissance .
Étape 4.2
Multipliez les exposants dans .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 4.2.2
Multipliez par .
Étape 5
Intégrez par parties en utilisant la formule , où et .
Étape 6
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Associez et .
Étape 6.2
Multipliez par .
Étape 6.3
Élevez à la puissance .
Étape 6.4
Utilisez la règle de puissance pour associer des exposants.
Étape 6.5
Additionnez et .
Étape 7
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 8
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 8.1
Multipliez par .
Étape 8.2
Multipliez par .
Étape 9
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 10
Appliquez les règles de base des exposants.
Appuyez ici pour voir plus d’étapes...
Étape 10.1
Retirez du dénominateur en l’élevant à la puissance .
Étape 10.2
Multipliez les exposants dans .
Appuyez ici pour voir plus d’étapes...
Étape 10.2.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 10.2.2
Multipliez par .
Étape 11
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 12
Simplifiez la réponse.
Appuyez ici pour voir plus d’étapes...
Étape 12.1
Réécrivez comme .
Étape 12.2
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 12.2.1
Multipliez par .
Étape 12.2.2
Déplacez à gauche de .
Étape 12.2.3
Multipliez par .
Étape 12.2.4
Multipliez par .
Étape 13
La réponse est la dérivée première de la fonction .