Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Réécrivez.
Étape 1.2
Simplifiez en ajoutant des zéros.
Étape 1.3
Annulez le facteur commun de .
Étape 1.3.1
Annulez le facteur commun.
Étape 1.3.2
Réécrivez l’expression.
Étape 1.4
Associez et .
Étape 2
Étape 2.1
Soustrayez des deux côtés de l’équation.
Étape 2.2
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 2.3
Associez et .
Étape 2.4
Associez les numérateurs sur le dénominateur commun.
Étape 2.5
Factorisez à partir de .
Étape 2.5.1
Multipliez par .
Étape 2.5.2
Factorisez à partir de .
Étape 2.5.3
Factorisez à partir de .
Étape 3
Définissez le numérateur égal à zéro.
Étape 4
Étape 4.1
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 4.2
Définissez égal à et résolvez .
Étape 4.2.1
Définissez égal à .
Étape 4.2.2
Résolvez pour .
Étape 4.2.2.1
Prenez le logarithme naturel des deux côtés de l’équation pour retirer la variable de l’exposant.
Étape 4.2.2.2
L’équation ne peut pas être résolue car est indéfini.
Indéfini
Étape 4.2.2.3
Il n’y a pas de solution pour
Aucune solution
Aucune solution
Aucune solution
Étape 4.3
Définissez égal à et résolvez .
Étape 4.3.1
Définissez égal à .
Étape 4.3.2
Résolvez pour .
Étape 4.3.2.1
Soustrayez des deux côtés de l’équation.
Étape 4.3.2.2
Divisez chaque terme dans par et simplifiez.
Étape 4.3.2.2.1
Divisez chaque terme dans par .
Étape 4.3.2.2.2
Simplifiez le côté gauche.
Étape 4.3.2.2.2.1
La division de deux valeurs négatives produit une valeur positive.
Étape 4.3.2.2.2.2
Divisez par .
Étape 4.3.2.2.3
Simplifiez le côté droit.
Étape 4.3.2.2.3.1
Divisez par .
Étape 4.4
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 5
Pour réécrire comme une fonction de , écrivez l’équation de sorte que figure seul d’un côté du signe égal et qu’une expression avec uniquement figure de l’autre côté.