Calcul infinitésimal Exemples

Évaluer à l'aide de la règle de l'Hôpital limite lorsque x approche de 0 de (7x-sin(x))/(x^2+sin(3x))
Étape 1
Évaluez la limite du numérateur et la limite du dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Prenez la limite du numérateur et la limite du dénominateur.
Étape 1.2
Évaluez la limite du numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1
Divisez la limite en utilisant la règle de la somme des limites sur la limite lorsque approche de .
Étape 1.2.2
Placez le terme hors de la limite car il constant par rapport à .
Étape 1.2.3
Déplacez la limite dans la fonction trigonométrique car le sinus est continu.
Étape 1.2.4
Évaluez les limites en insérant pour toutes les occurrences de .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.4.1
Évaluez la limite de en insérant pour .
Étape 1.2.4.2
Évaluez la limite de en insérant pour .
Étape 1.2.5
Simplifiez la réponse.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.5.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.5.1.1
Multipliez par .
Étape 1.2.5.1.2
La valeur exacte de est .
Étape 1.2.5.1.3
Multipliez par .
Étape 1.2.5.2
Additionnez et .
Étape 1.3
Évaluez la limite du dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.1
Divisez la limite en utilisant la règle de la somme des limites sur la limite lorsque approche de .
Étape 1.3.2
Déplacez l’exposant de hors de la limite en utilisant la règle des puissances limites.
Étape 1.3.3
Déplacez la limite dans la fonction trigonométrique car le sinus est continu.
Étape 1.3.4
Placez le terme hors de la limite car il constant par rapport à .
Étape 1.3.5
Évaluez les limites en insérant pour toutes les occurrences de .
Appuyez ici pour voir plus d’étapes...
Étape 1.3.5.1
Évaluez la limite de en insérant pour .
Étape 1.3.5.2
Évaluez la limite de en insérant pour .
Étape 1.3.6
Simplifiez la réponse.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.6.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.6.1.1
L’élévation de à toute puissance positive produit .
Étape 1.3.6.1.2
Multipliez par .
Étape 1.3.6.1.3
La valeur exacte de est .
Étape 1.3.6.2
Additionnez et .
Étape 1.3.6.3
L’expression contient une division par . L’expression est indéfinie.
Indéfini
Étape 1.3.7
L’expression contient une division par . L’expression est indéfinie.
Indéfini
Étape 1.4
L’expression contient une division par . L’expression est indéfinie.
Indéfini
Étape 2
Comme est de forme indéterminée, appliquez la règle de l’Hôpital. La règle de l’Hôpital indique que la limite d’un quotient de fonctions est égale à la limite du quotient de leurs dérivées.
Étape 3
Déterminez la dérivée du numérateur et du dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Différenciez le numérateur et le dénominateur.
Étape 3.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 3.3
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.3.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 3.3.3
Multipliez par .
Étape 3.4
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 3.4.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.4.2
La dérivée de par rapport à est .
Étape 3.5
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 3.6
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 3.7
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 3.7.1
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 3.7.1.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 3.7.1.2
La dérivée de par rapport à est .
Étape 3.7.1.3
Remplacez toutes les occurrences de par .
Étape 3.7.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.7.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 3.7.4
Multipliez par .
Étape 3.7.5
Déplacez à gauche de .
Étape 4
Divisez la limite en utilisant la règle du quotient des limites sur la limite lorsque approche de .
Étape 5
Divisez la limite en utilisant la règle de la somme des limites sur la limite lorsque approche de .
Étape 6
Évaluez la limite de qui est constante lorsque approche de .
Étape 7
Déplacez la limite dans la fonction trigonométrique car le cosinus est continu.
Étape 8
Divisez la limite en utilisant la règle de la somme des limites sur la limite lorsque approche de .
Étape 9
Placez le terme hors de la limite car il constant par rapport à .
Étape 10
Placez le terme hors de la limite car il constant par rapport à .
Étape 11
Déplacez la limite dans la fonction trigonométrique car le cosinus est continu.
Étape 12
Placez le terme hors de la limite car il constant par rapport à .
Étape 13
Évaluez les limites en insérant pour toutes les occurrences de .
Appuyez ici pour voir plus d’étapes...
Étape 13.1
Évaluez la limite de en insérant pour .
Étape 13.2
Évaluez la limite de en insérant pour .
Étape 13.3
Évaluez la limite de en insérant pour .
Étape 14
Simplifiez la réponse.
Appuyez ici pour voir plus d’étapes...
Étape 14.1
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 14.1.1
La valeur exacte de est .
Étape 14.1.2
Multipliez par .
Étape 14.1.3
Soustrayez de .
Étape 14.2
Simplifiez le dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 14.2.1
Multipliez par .
Étape 14.2.2
Multipliez par .
Étape 14.2.3
La valeur exacte de est .
Étape 14.2.4
Multipliez par .
Étape 14.2.5
Additionnez et .
Étape 14.3
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 14.3.1
Factorisez à partir de .
Étape 14.3.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 14.3.2.1
Factorisez à partir de .
Étape 14.3.2.2
Annulez le facteur commun.
Étape 14.3.2.3
Réécrivez l’expression.
Étape 14.3.2.4
Divisez par .