Calcul infinitésimal Exemples

Évaluer à l'aide de la règle de l'Hôpital limite lorsque t approche de infinity de (e^(3t)+t^2)/(5e^(3t)-t)
Étape 1
Divisez le numérateur et le dénominateur par le terme qui augmente le plus rapidement dans le dénominateur.
Étape 2
Évaluez la limite.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 2.1.1
Annulez le facteur commun.
Étape 2.1.2
Réécrivez l’expression.
Étape 2.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Annulez le facteur commun.
Étape 2.2.2
Divisez par .
Étape 2.3
Divisez la limite en utilisant la règle du quotient des limites sur la limite lorsque approche de .
Étape 2.4
Divisez la limite en utilisant la règle de la somme des limites sur la limite lorsque approche de .
Étape 2.5
Évaluez la limite de qui est constante lorsque approche de .
Étape 3
Appliquez la Règle de l’Hôpital.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Évaluez la limite du numérateur et la limite du dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 3.1.1
Prenez la limite du numérateur et la limite du dénominateur.
Étape 3.1.2
La limite à l’infini d’un polynôme dont le coefficient directeur est positif à l’infini.
Étape 3.1.3
Comme l’exposant approche de , la quantité approche de .
Étape 3.1.4
L’infini divisé l’infini est indéfini.
Indéfini
Étape 3.2
Comme est de forme indéterminée, appliquez la règle de l’Hôpital. La règle de l’Hôpital indique que la limite d’un quotient de fonctions est égale à la limite du quotient de leurs dérivées.
Étape 3.3
Déterminez la dérivée du numérateur et du dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1
Différenciez le numérateur et le dénominateur.
Étape 3.3.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 3.3.3
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.3.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 3.3.3.2
Différenciez en utilisant la règle exponentielle qui indique que est =.
Étape 3.3.3.3
Remplacez toutes les occurrences de par .
Étape 3.3.4
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.3.5
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 3.3.6
Multipliez par .
Étape 3.3.7
Déplacez à gauche de .
Étape 4
Placez le terme hors de la limite car il est constant par rapport à .
Étape 5
Appliquez la Règle de l’Hôpital.
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Évaluez la limite du numérateur et la limite du dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 5.1.1
Prenez la limite du numérateur et la limite du dénominateur.
Étape 5.1.2
La limite à l’infini d’un polynôme dont le coefficient directeur est positif à l’infini.
Étape 5.1.3
Comme l’exposant approche de , la quantité approche de .
Étape 5.1.4
L’infini divisé l’infini est indéfini.
Indéfini
Étape 5.2
Comme est de forme indéterminée, appliquez la règle de l’Hôpital. La règle de l’Hôpital indique que la limite d’un quotient de fonctions est égale à la limite du quotient de leurs dérivées.
Étape 5.3
Déterminez la dérivée du numérateur et du dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 5.3.1
Différenciez le numérateur et le dénominateur.
Étape 5.3.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 5.3.3
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 5.3.3.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 5.3.3.2
Différenciez en utilisant la règle exponentielle qui indique que est =.
Étape 5.3.3.3
Remplacez toutes les occurrences de par .
Étape 5.3.4
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 5.3.5
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 5.3.6
Multipliez par .
Étape 5.3.7
Déplacez à gauche de .
Étape 6
Placez le terme hors de la limite car il est constant par rapport à .
Étape 7
Comme son numérateur approche d’un nombre réel alors que son dénominateur n’a pas de borne, la fraction approche de .
Étape 8
Évaluez la limite.
Appuyez ici pour voir plus d’étapes...
Étape 8.1
Divisez la limite en utilisant la règle de la somme des limites sur la limite lorsque approche de .
Étape 8.2
Évaluez la limite de qui est constante lorsque approche de .
Étape 9
Appliquez la Règle de l’Hôpital.
Appuyez ici pour voir plus d’étapes...
Étape 9.1
Évaluez la limite du numérateur et la limite du dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 9.1.1
Prenez la limite du numérateur et la limite du dénominateur.
Étape 9.1.2
La limite à l’infini d’un polynôme dont le coefficient directeur est positif à l’infini.
Étape 9.1.3
Comme l’exposant approche de , la quantité approche de .
Étape 9.1.4
L’infini divisé l’infini est indéfini.
Indéfini
Étape 9.2
Comme est de forme indéterminée, appliquez la règle de l’Hôpital. La règle de l’Hôpital indique que la limite d’un quotient de fonctions est égale à la limite du quotient de leurs dérivées.
Étape 9.3
Déterminez la dérivée du numérateur et du dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 9.3.1
Différenciez le numérateur et le dénominateur.
Étape 9.3.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 9.3.3
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 9.3.3.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 9.3.3.2
Différenciez en utilisant la règle exponentielle qui indique que est =.
Étape 9.3.3.3
Remplacez toutes les occurrences de par .
Étape 9.3.4
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 9.3.5
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 9.3.6
Multipliez par .
Étape 9.3.7
Déplacez à gauche de .
Étape 10
Placez le terme hors de la limite car il est constant par rapport à .
Étape 11
Comme son numérateur approche d’un nombre réel alors que son dénominateur n’a pas de borne, la fraction approche de .
Étape 12
Simplifiez la réponse.
Appuyez ici pour voir plus d’étapes...
Étape 12.1
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 12.1.1
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 12.1.1.1
Multipliez par .
Étape 12.1.1.2
Multipliez par .
Étape 12.1.2
Multipliez par .
Étape 12.1.3
Additionnez et .
Étape 12.2
Simplifiez le dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 12.2.1
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 12.2.1.1
Multipliez par .
Étape 12.2.1.2
Multipliez par .
Étape 12.2.2
Additionnez et .