Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Déterminez la dérivée première.
Étape 1.1.1
Différenciez.
Étape 1.1.1.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.1.1.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.1.2
Évaluez .
Étape 1.1.2.1
Utilisez pour réécrire comme .
Étape 1.1.2.2
Différenciez en utilisant la règle d’enchaînement, qui indique que est où et .
Étape 1.1.2.2.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 1.1.2.2.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.1.2.2.3
Remplacez toutes les occurrences de par .
Étape 1.1.2.3
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.1.2.4
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.2.5
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.2.6
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.1.2.7
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 1.1.2.8
Associez et .
Étape 1.1.2.9
Associez les numérateurs sur le dénominateur commun.
Étape 1.1.2.10
Simplifiez le numérateur.
Étape 1.1.2.10.1
Multipliez par .
Étape 1.1.2.10.2
Soustrayez de .
Étape 1.1.2.11
Placez le signe moins devant la fraction.
Étape 1.1.2.12
Multipliez par .
Étape 1.1.2.13
Soustrayez de .
Étape 1.1.2.14
Associez et .
Étape 1.1.2.15
Associez et .
Étape 1.1.2.16
Associez et .
Étape 1.1.2.17
Placez sur le dénominateur en utilisant la règle de l’exposant négatif .
Étape 1.1.2.18
Factorisez à partir de .
Étape 1.1.2.19
Annulez les facteurs communs.
Étape 1.1.2.19.1
Factorisez à partir de .
Étape 1.1.2.19.2
Annulez le facteur commun.
Étape 1.1.2.19.3
Réécrivez l’expression.
Étape 1.1.2.20
Placez le signe moins devant la fraction.
Étape 1.1.3
Remettez les termes dans l’ordre.
Étape 1.2
La dérivée première de par rapport à est .
Étape 2
Étape 2.1
Définissez la dérivée première égale à .
Étape 2.2
Représentez chaque côté de l’équation. La solution est la valeur x du point d’intersection.
Étape 3
Étape 3.1
Appliquez la règle pour réécrire l’élévation à la puissance comme un radical.
Étape 3.2
Définissez le dénominateur dans égal à pour déterminer où l’expression est indéfinie.
Étape 3.3
Résolvez .
Étape 3.3.1
Pour retirer le radical du côté gauche de l’équation, élevez au cube les deux côtés de l’équation.
Étape 3.3.2
Simplifiez chaque côté de l’équation.
Étape 3.3.2.1
Utilisez pour réécrire comme .
Étape 3.3.2.2
Simplifiez le côté gauche.
Étape 3.3.2.2.1
Multipliez les exposants dans .
Étape 3.3.2.2.1.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 3.3.2.2.1.2
Annulez le facteur commun de .
Étape 3.3.2.2.1.2.1
Annulez le facteur commun.
Étape 3.3.2.2.1.2.2
Réécrivez l’expression.
Étape 3.3.2.3
Simplifiez le côté droit.
Étape 3.3.2.3.1
L’élévation de à toute puissance positive produit .
Étape 3.3.3
Résolvez .
Étape 3.3.3.1
Définissez le égal à .
Étape 3.3.3.2
Résolvez .
Étape 3.3.3.2.1
Soustrayez des deux côtés de l’équation.
Étape 3.3.3.2.2
Divisez chaque terme dans par et simplifiez.
Étape 3.3.3.2.2.1
Divisez chaque terme dans par .
Étape 3.3.3.2.2.2
Simplifiez le côté gauche.
Étape 3.3.3.2.2.2.1
La division de deux valeurs négatives produit une valeur positive.
Étape 3.3.3.2.2.2.2
Divisez par .
Étape 3.3.3.2.2.3
Simplifiez le côté droit.
Étape 3.3.3.2.2.3.1
Divisez par .
Étape 3.3.3.2.3
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 4
Étape 4.1
Évaluez sur .
Étape 4.1.1
Remplacez par .
Étape 4.1.2
Simplifiez
Étape 4.1.2.1
Simplifiez chaque terme.
Étape 4.1.2.1.1
Un à n’importe quelle puissance est égal à un.
Étape 4.1.2.1.2
Multipliez par .
Étape 4.1.2.1.3
Soustrayez de .
Étape 4.1.2.1.4
Toute racine de est .
Étape 4.1.2.2
Additionnez et .
Étape 4.2
Évaluez sur .
Étape 4.2.1
Remplacez par .
Étape 4.2.2
Simplifiez
Étape 4.2.2.1
Simplifiez chaque terme.
Étape 4.2.2.1.1
Réécrivez comme .
Étape 4.2.2.1.1.1
Utilisez pour réécrire comme .
Étape 4.2.2.1.1.2
Appliquez la règle de puissance et multipliez les exposants, .
Étape 4.2.2.1.1.3
Associez et .
Étape 4.2.2.1.1.4
Annulez le facteur commun de .
Étape 4.2.2.1.1.4.1
Annulez le facteur commun.
Étape 4.2.2.1.1.4.2
Réécrivez l’expression.
Étape 4.2.2.1.1.5
Évaluez l’exposant.
Étape 4.2.2.1.2
Multipliez par .
Étape 4.2.2.1.3
Soustrayez de .
Étape 4.2.2.1.4
Réécrivez comme .
Étape 4.2.2.1.5
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels.
Étape 4.2.2.2
Additionnez et .
Étape 4.3
Indiquez tous les points.
Étape 5