Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Déterminez la dérivée première.
Étape 1.1.1
Différenciez.
Étape 1.1.1.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.1.1.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.1.2
Évaluez .
Étape 1.1.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.2.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.1.2.3
Multipliez par .
Étape 1.1.3
Évaluez .
Étape 1.1.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.3.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.1.3.3
Multipliez par .
Étape 1.1.4
Différenciez en utilisant la règle de la constante.
Étape 1.1.4.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.4.2
Additionnez et .
Étape 1.2
La dérivée première de par rapport à est .
Étape 2
Étape 2.1
Définissez la dérivée première égale à .
Étape 2.2
Factorisez le côté gauche de l’équation.
Étape 2.2.1
Factorisez à partir de .
Étape 2.2.1.1
Factorisez à partir de .
Étape 2.2.1.2
Factorisez à partir de .
Étape 2.2.1.3
Factorisez à partir de .
Étape 2.2.1.4
Factorisez à partir de .
Étape 2.2.1.5
Factorisez à partir de .
Étape 2.2.2
Factorisez.
Étape 2.2.2.1
Factorisez par regroupement.
Étape 2.2.2.1.1
Pour un polynôme de la forme , réécrivez le point milieu comme la somme de deux termes dont le produit est et dont la somme est .
Étape 2.2.2.1.1.1
Factorisez à partir de .
Étape 2.2.2.1.1.2
Réécrivez comme plus
Étape 2.2.2.1.1.3
Appliquez la propriété distributive.
Étape 2.2.2.1.2
Factorisez le plus grand facteur commun à partir de chaque groupe.
Étape 2.2.2.1.2.1
Regroupez les deux premiers termes et les deux derniers termes.
Étape 2.2.2.1.2.2
Factorisez le plus grand facteur commun à partir de chaque groupe.
Étape 2.2.2.1.3
Factorisez le polynôme en factorisant le plus grand facteur commun, .
Étape 2.2.2.2
Supprimez les parenthèses inutiles.
Étape 2.3
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 2.4
Définissez égal à .
Étape 2.5
Définissez égal à et résolvez .
Étape 2.5.1
Définissez égal à .
Étape 2.5.2
Résolvez pour .
Étape 2.5.2.1
Ajoutez aux deux côtés de l’équation.
Étape 2.5.2.2
Divisez chaque terme dans par et simplifiez.
Étape 2.5.2.2.1
Divisez chaque terme dans par .
Étape 2.5.2.2.2
Simplifiez le côté gauche.
Étape 2.5.2.2.2.1
Annulez le facteur commun de .
Étape 2.5.2.2.2.1.1
Annulez le facteur commun.
Étape 2.5.2.2.2.1.2
Divisez par .
Étape 2.6
Définissez égal à et résolvez .
Étape 2.6.1
Définissez égal à .
Étape 2.6.2
Ajoutez aux deux côtés de l’équation.
Étape 2.7
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 3
Étape 3.1
Le domaine de l’expression est l’ensemble des nombres réels excepté là où l’expression est indéfinie. Dans ce cas, aucun nombre réel ne rend l’expression indéfinie.
Étape 4
Étape 4.1
Évaluez sur .
Étape 4.1.1
Remplacez par .
Étape 4.1.2
Simplifiez
Étape 4.1.2.1
Simplifiez chaque terme.
Étape 4.1.2.1.1
L’élévation de à toute puissance positive produit .
Étape 4.1.2.1.2
L’élévation de à toute puissance positive produit .
Étape 4.1.2.1.3
Multipliez par .
Étape 4.1.2.1.4
L’élévation de à toute puissance positive produit .
Étape 4.1.2.1.5
Multipliez par .
Étape 4.1.2.2
Simplifiez en ajoutant des nombres.
Étape 4.1.2.2.1
Additionnez et .
Étape 4.1.2.2.2
Additionnez et .
Étape 4.1.2.2.3
Additionnez et .
Étape 4.2
Évaluez sur .
Étape 4.2.1
Remplacez par .
Étape 4.2.2
Simplifiez
Étape 4.2.2.1
Simplifiez chaque terme.
Étape 4.2.2.1.1
Appliquez la règle de produit à .
Étape 4.2.2.1.2
Un à n’importe quelle puissance est égal à un.
Étape 4.2.2.1.3
Élevez à la puissance .
Étape 4.2.2.1.4
Appliquez la règle de produit à .
Étape 4.2.2.1.5
Un à n’importe quelle puissance est égal à un.
Étape 4.2.2.1.6
Élevez à la puissance .
Étape 4.2.2.1.7
Annulez le facteur commun de .
Étape 4.2.2.1.7.1
Factorisez à partir de .
Étape 4.2.2.1.7.2
Factorisez à partir de .
Étape 4.2.2.1.7.3
Annulez le facteur commun.
Étape 4.2.2.1.7.4
Réécrivez l’expression.
Étape 4.2.2.1.8
Associez et .
Étape 4.2.2.1.9
Placez le signe moins devant la fraction.
Étape 4.2.2.1.10
Appliquez la règle de produit à .
Étape 4.2.2.1.11
Un à n’importe quelle puissance est égal à un.
Étape 4.2.2.1.12
Élevez à la puissance .
Étape 4.2.2.1.13
Annulez le facteur commun de .
Étape 4.2.2.1.13.1
Annulez le facteur commun.
Étape 4.2.2.1.13.2
Réécrivez l’expression.
Étape 4.2.2.2
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 4.2.2.3
Écrivez chaque expression avec un dénominateur commun , en multipliant chacun par un facteur approprié de .
Étape 4.2.2.3.1
Multipliez par .
Étape 4.2.2.3.2
Multipliez par .
Étape 4.2.2.4
Associez les numérateurs sur le dénominateur commun.
Étape 4.2.2.5
Simplifiez le numérateur.
Étape 4.2.2.5.1
Multipliez par .
Étape 4.2.2.5.2
Soustrayez de .
Étape 4.2.2.6
Placez le signe moins devant la fraction.
Étape 4.2.2.7
Écrivez comme une fraction avec un dénominateur commun.
Étape 4.2.2.8
Associez les numérateurs sur le dénominateur commun.
Étape 4.2.2.9
Additionnez et .
Étape 4.3
Évaluez sur .
Étape 4.3.1
Remplacez par .
Étape 4.3.2
Simplifiez
Étape 4.3.2.1
Simplifiez chaque terme.
Étape 4.3.2.1.1
Élevez à la puissance .
Étape 4.3.2.1.2
Élevez à la puissance .
Étape 4.3.2.1.3
Multipliez par .
Étape 4.3.2.1.4
Multipliez par en additionnant les exposants.
Étape 4.3.2.1.4.1
Multipliez par .
Étape 4.3.2.1.4.1.1
Élevez à la puissance .
Étape 4.3.2.1.4.1.2
Utilisez la règle de puissance pour associer des exposants.
Étape 4.3.2.1.4.2
Additionnez et .
Étape 4.3.2.1.5
Élevez à la puissance .
Étape 4.3.2.2
Simplifiez en ajoutant et en soustrayant.
Étape 4.3.2.2.1
Soustrayez de .
Étape 4.3.2.2.2
Additionnez et .
Étape 4.4
Indiquez tous les points.
Étape 5