Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Déterminez la dérivée première.
Étape 1.1.1
Réécrivez comme .
Étape 1.1.2
Développez à l’aide de la méthode FOIL.
Étape 1.1.2.1
Appliquez la propriété distributive.
Étape 1.1.2.2
Appliquez la propriété distributive.
Étape 1.1.2.3
Appliquez la propriété distributive.
Étape 1.1.3
Simplifiez et associez les termes similaires.
Étape 1.1.3.1
Simplifiez chaque terme.
Étape 1.1.3.1.1
Réécrivez en utilisant la commutativité de la multiplication.
Étape 1.1.3.1.2
Multipliez par en additionnant les exposants.
Étape 1.1.3.1.2.1
Déplacez .
Étape 1.1.3.1.2.2
Multipliez par .
Étape 1.1.3.1.3
Multipliez par .
Étape 1.1.3.1.4
Multipliez par .
Étape 1.1.3.1.5
Multipliez par .
Étape 1.1.3.1.6
Multipliez par .
Étape 1.1.3.2
Soustrayez de .
Étape 1.1.4
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.1.5
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.6
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.1.7
Multipliez par .
Étape 1.1.8
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.9
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.1.10
Multipliez par .
Étape 1.1.11
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.12
Additionnez et .
Étape 1.2
La dérivée première de par rapport à est .
Étape 2
Étape 2.1
Définissez la dérivée première égale à .
Étape 2.2
Ajoutez aux deux côtés de l’équation.
Étape 2.3
Divisez chaque terme dans par et simplifiez.
Étape 2.3.1
Divisez chaque terme dans par .
Étape 2.3.2
Simplifiez le côté gauche.
Étape 2.3.2.1
Annulez le facteur commun de .
Étape 2.3.2.1.1
Annulez le facteur commun.
Étape 2.3.2.1.2
Divisez par .
Étape 2.3.3
Simplifiez le côté droit.
Étape 2.3.3.1
Annulez le facteur commun à et .
Étape 2.3.3.1.1
Factorisez à partir de .
Étape 2.3.3.1.2
Annulez les facteurs communs.
Étape 2.3.3.1.2.1
Factorisez à partir de .
Étape 2.3.3.1.2.2
Annulez le facteur commun.
Étape 2.3.3.1.2.3
Réécrivez l’expression.
Étape 3
Les valeurs qui rendent la dérivée égale à sont .
Étape 4
Après avoir trouvé le point qui rend la dérivée égale à ou indéfinie, l’intervalle pour vérifier où augmente et diminue est .
Étape 5
Étape 5.1
Remplacez la variable par dans l’expression.
Étape 5.2
Simplifiez le résultat.
Étape 5.2.1
Simplifiez chaque terme.
Étape 5.2.1.1
Annulez le facteur commun de .
Étape 5.2.1.1.1
Factorisez à partir de .
Étape 5.2.1.1.2
Annulez le facteur commun.
Étape 5.2.1.1.3
Réécrivez l’expression.
Étape 5.2.1.2
Multipliez par .
Étape 5.2.2
Soustrayez de .
Étape 5.2.3
La réponse finale est .
Étape 5.3
Sur la dérivée est . Comme elle est négative, la fonction diminue sur .
Diminue sur depuis
Diminue sur depuis
Étape 6
Étape 6.1
Remplacez la variable par dans l’expression.
Étape 6.2
Simplifiez le résultat.
Étape 6.2.1
Simplifiez chaque terme.
Étape 6.2.1.1
Annulez le facteur commun de .
Étape 6.2.1.1.1
Factorisez à partir de .
Étape 6.2.1.1.2
Annulez le facteur commun.
Étape 6.2.1.1.3
Réécrivez l’expression.
Étape 6.2.1.2
Multipliez par .
Étape 6.2.2
Soustrayez de .
Étape 6.2.3
La réponse finale est .
Étape 6.3
Sur la dérivée est . Comme elle est positive, la fonction augmente sur .
Augmente sur depuis
Augmente sur depuis
Étape 7
Indiquez les intervalles sur lesquels la fonction est croissante et décroissante.
Augmente sur :
Diminue sur :
Étape 8