Calcul infinitésimal Exemples

Encontre a Derivada de Second y=csc(2x)
Étape 1
Déterminez la dérivée première.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 1.1.2
La dérivée de par rapport à est .
Étape 1.1.3
Remplacez toutes les occurrences de par .
Étape 1.2
Différenciez.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.2.2
Multipliez par .
Étape 1.2.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.2.4
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.4.1
Multipliez par .
Étape 1.2.4.2
Réorganisez les facteurs de .
Étape 2
Déterminez la dérivée seconde.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2
Différenciez en utilisant la règle de produit qui indique que est et .
Étape 2.3
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 2.3.2
La dérivée de par rapport à est .
Étape 2.3.3
Remplacez toutes les occurrences de par .
Étape 2.4
Élevez à la puissance .
Étape 2.5
Élevez à la puissance .
Étape 2.6
Utilisez la règle de puissance pour associer des exposants.
Étape 2.7
Différenciez.
Appuyez ici pour voir plus d’étapes...
Étape 2.7.1
Additionnez et .
Étape 2.7.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.7.3
Multipliez par .
Étape 2.7.4
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.7.5
Multipliez par .
Étape 2.8
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 2.8.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 2.8.2
La dérivée de par rapport à est .
Étape 2.8.3
Remplacez toutes les occurrences de par .
Étape 2.9
Élevez à la puissance .
Étape 2.10
Utilisez la règle de puissance pour associer des exposants.
Étape 2.11
Additionnez et .
Étape 2.12
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.13
Multipliez par .
Étape 2.14
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.15
Multipliez par .
Étape 2.16
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 2.16.1
Appliquez la propriété distributive.
Étape 2.16.2
Associez des termes.
Appuyez ici pour voir plus d’étapes...
Étape 2.16.2.1
Multipliez par .
Étape 2.16.2.2
Multipliez par .
Étape 2.16.3
Remettez les termes dans l’ordre.