Calcul infinitésimal Exemples

Encontre a Derivada de Fourth f'(p)=d/(dp)*14700-d/(dp)(7p^2)
Étape 1
Déterminez la dérivée première.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.2
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1.1
Annulez le facteur commun.
Étape 1.2.1.2
Réécrivez l’expression.
Étape 1.2.2
Associez et .
Étape 1.2.3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.2.4
Réécrivez comme .
Étape 1.2.5
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.2.6
Multipliez par .
Étape 1.3
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 1.3.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.3.1.1
Annulez le facteur commun.
Étape 1.3.1.2
Réécrivez l’expression.
Étape 1.3.2
Multipliez par .
Étape 1.3.3
Associez et .
Étape 1.3.4
Associez et .
Étape 1.3.5
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 1.3.5.1
Factorisez à partir de .
Étape 1.3.5.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.5.2.1
Élevez à la puissance .
Étape 1.3.5.2.2
Factorisez à partir de .
Étape 1.3.5.2.3
Annulez le facteur commun.
Étape 1.3.5.2.4
Réécrivez l’expression.
Étape 1.3.5.2.5
Divisez par .
Étape 1.3.6
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.3.7
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.3.8
Multipliez par .
Étape 1.4
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 1.4.1
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 1.4.2
Associez des termes.
Appuyez ici pour voir plus d’étapes...
Étape 1.4.2.1
Associez et .
Étape 1.4.2.2
Placez le signe moins devant la fraction.
Étape 2
Déterminez la dérivée seconde.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.2
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2.2
Réécrivez comme .
Étape 2.2.3
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.3.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 2.2.3.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.2.3.3
Remplacez toutes les occurrences de par .
Étape 2.2.4
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.2.5
Multipliez les exposants dans .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.5.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 2.2.5.2
Multipliez par .
Étape 2.2.6
Multipliez par .
Étape 2.2.7
Élevez à la puissance .
Étape 2.2.8
Utilisez la règle de puissance pour associer des exposants.
Étape 2.2.9
Soustrayez de .
Étape 2.2.10
Multipliez par .
Étape 2.3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.4
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 2.4.1
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 2.4.2
Associez des termes.
Appuyez ici pour voir plus d’étapes...
Étape 2.4.2.1
Associez et .
Étape 2.4.2.2
Additionnez et .
Étape 3
Déterminez la dérivée troisième.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.2
Appliquez les règles de base des exposants.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Réécrivez comme .
Étape 3.2.2
Multipliez les exposants dans .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.2.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 3.2.2.2
Multipliez par .
Étape 3.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 3.4
Multipliez par .
Étape 3.5
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 3.5.1
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 3.5.2
Associez des termes.
Appuyez ici pour voir plus d’étapes...
Étape 3.5.2.1
Associez et .
Étape 3.5.2.2
Placez le signe moins devant la fraction.
Étape 4
Déterminez la dérivée quatrième.
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 4.2
Appliquez les règles de base des exposants.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1
Réécrivez comme .
Étape 4.2.2
Multipliez les exposants dans .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.2.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 4.2.2.2
Multipliez par .
Étape 4.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 4.4
Multipliez par .
Étape 4.5
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 4.5.1
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 4.5.2
Associez et .
Étape 5
La dérivée quatrième de par rapport à est .