Calcul infinitésimal Exemples

Encontre a Derivada de Second f(x)=(2+4x)(3-2x)
Étape 1
Déterminez la dérivée première.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Différenciez en utilisant la règle de produit qui indique que est et .
Étape 1.2
Différenciez.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.2.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.2.3
Additionnez et .
Étape 1.2.4
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.2.5
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.2.6
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.6.1
Multipliez par .
Étape 1.2.6.2
Déplacez à gauche de .
Étape 1.2.7
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.2.8
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.2.9
Additionnez et .
Étape 1.2.10
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.2.11
Déplacez à gauche de .
Étape 1.2.12
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.2.13
Multipliez par .
Étape 1.3
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 1.3.1
Appliquez la propriété distributive.
Étape 1.3.2
Appliquez la propriété distributive.
Étape 1.3.3
Associez des termes.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.3.1
Multipliez par .
Étape 1.3.3.2
Multipliez par .
Étape 1.3.3.3
Multipliez par .
Étape 1.3.3.4
Multipliez par .
Étape 1.3.3.5
Additionnez et .
Étape 1.3.3.6
Soustrayez de .
Étape 2
Déterminez la dérivée seconde.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.2
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.2.3
Multipliez par .
Étape 2.3
Différenciez en utilisant la règle de la constante.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.3.2
Additionnez et .
Étape 3
La dérivée seconde de par rapport à est .