Calcul infinitésimal Exemples

Encontre a Derivada de Second g(x)=8x(2x-5)^9
Étape 1
Déterminez la dérivée première.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.2
Différenciez en utilisant la règle de produit qui indique que est et .
Étape 1.3
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 1.3.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 1.3.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.3.3
Remplacez toutes les occurrences de par .
Étape 1.4
Différenciez.
Appuyez ici pour voir plus d’étapes...
Étape 1.4.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.4.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.4.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.4.4
Multipliez par .
Étape 1.4.5
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.4.6
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 1.4.6.1
Additionnez et .
Étape 1.4.6.2
Multipliez par .
Étape 1.4.7
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.4.8
Multipliez par .
Étape 1.5
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 1.5.1
Appliquez la propriété distributive.
Étape 1.5.2
Multipliez par .
Étape 1.5.3
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 1.5.3.1
Factorisez à partir de .
Étape 1.5.3.2
Factorisez à partir de .
Étape 1.5.3.3
Factorisez à partir de .
Étape 1.5.4
Additionnez et .
Étape 2
Déterminez la dérivée seconde.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2
Différenciez en utilisant la règle de produit qui indique que est et .
Étape 2.3
Différenciez.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.3.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.3.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.3.4
Multipliez par .
Étape 2.3.5
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.3.6
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.6.1
Additionnez et .
Étape 2.3.6.2
Déplacez à gauche de .
Étape 2.4
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 2.4.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 2.4.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.4.3
Remplacez toutes les occurrences de par .
Étape 2.5
Différenciez.
Appuyez ici pour voir plus d’étapes...
Étape 2.5.1
Déplacez à gauche de .
Étape 2.5.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.5.3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.5.4
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.5.5
Multipliez par .
Étape 2.5.6
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.5.7
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 2.5.7.1
Additionnez et .
Étape 2.5.7.2
Multipliez par .
Étape 2.6
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 2.6.1
Appliquez la propriété distributive.
Étape 2.6.2
Appliquez la propriété distributive.
Étape 2.6.3
Multipliez par .
Étape 2.6.4
Multipliez par .
Étape 2.6.5
Multipliez par .
Étape 2.6.6
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 2.6.6.1
Factorisez à partir de .
Étape 2.6.6.2
Factorisez à partir de .
Étape 2.6.6.3
Factorisez à partir de .
Étape 3
La dérivée seconde de par rapport à est .