Calcul infinitésimal Exemples

Trouver le domaine logarithme népérien de racine carrée de x^2-3-x
Étape 1
Définissez l’argument dans supérieur à pour déterminer où l’expression est définie.
Étape 2
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Ajoutez aux deux côtés de l’inégalité.
Étape 2.2
Pour retirer le radical du côté gauche de l’inégalité, élevez au carré les deux côtés de l’inégalité.
Étape 2.3
Simplifiez chaque côté de l’inégalité.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Utilisez pour réécrire comme .
Étape 2.3.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.2.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.2.1.1
Multipliez les exposants dans .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.2.1.1.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 2.3.2.1.1.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.2.1.1.2.1
Annulez le facteur commun.
Étape 2.3.2.1.1.2.2
Réécrivez l’expression.
Étape 2.3.2.1.2
Simplifiez
Étape 2.4
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 2.4.1
Déplacez tous les termes contenant du côté gauche de l’inégalité.
Appuyez ici pour voir plus d’étapes...
Étape 2.4.1.1
Soustrayez des deux côtés de l’inégalité.
Étape 2.4.1.2
Associez les termes opposés dans .
Appuyez ici pour voir plus d’étapes...
Étape 2.4.1.2.1
Soustrayez de .
Étape 2.4.1.2.2
Soustrayez de .
Étape 2.4.2
Comme , il n’y a aucune solution.
Aucune solution
Aucune solution
Aucune solution
Étape 3
Définissez le radicande dans supérieur ou égal à pour déterminer où l’expression est définie.
Étape 4
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Ajoutez aux deux côtés de l’inégalité.
Étape 4.2
Take the specified root of both sides of the inequality to eliminate the exponent on the left side.
Étape 4.3
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 4.3.1
Extrayez les termes de sous le radical.
Étape 4.4
Écrivez comme fonction définie par morceaux.
Appuyez ici pour voir plus d’étapes...
Étape 4.4.1
Pour déterminer l’intervalle pour la première partie, déterminez où l’intérieur de la valeur absolue est non négatif.
Étape 4.4.2
Dans la partie où est non négatif, retirez la valeur absolue.
Étape 4.4.3
Pour déterminer l’intervalle pour la deuxième partie, déterminez où l’intérieur de la valeur absolue est négatif.
Étape 4.4.4
Dans la partie où est négatif, retirez la valeur absolue et multipliez par .
Étape 4.4.5
Écrivez comme fonction définie par morceaux.
Étape 4.5
Déterminez l’intersection de et .
Étape 4.6
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 4.6.1
Divisez chaque terme dans par . Lorsque vous multipliez ou divisez les deux côtés d’une inégalité par une valeur négative, inversez le sens du signe d’inégalité.
Étape 4.6.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 4.6.2.1
La division de deux valeurs négatives produit une valeur positive.
Étape 4.6.2.2
Divisez par .
Étape 4.6.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 4.6.3.1
Déplacez le moins un du dénominateur de .
Étape 4.6.3.2
Réécrivez comme .
Étape 4.7
Déterminez l’union des solutions.
ou
ou
Étape 5
Le domaine est l’ensemble des valeurs de qui rendent l’expression définie.
Notation d’intervalle :
Notation de constructeur d’ensemble :
Étape 6