Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Déterminez la dérivée première.
Étape 1.1.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.1.2
Évaluez .
Étape 1.1.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.2.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.1.2.3
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 1.1.2.4
Associez et .
Étape 1.1.2.5
Associez les numérateurs sur le dénominateur commun.
Étape 1.1.2.6
Simplifiez le numérateur.
Étape 1.1.2.6.1
Multipliez par .
Étape 1.1.2.6.2
Soustrayez de .
Étape 1.1.2.7
Placez le signe moins devant la fraction.
Étape 1.1.2.8
Associez et .
Étape 1.1.2.9
Associez et .
Étape 1.1.2.10
Placez sur le dénominateur en utilisant la règle de l’exposant négatif .
Étape 1.1.2.11
Factorisez à partir de .
Étape 1.1.2.12
Annulez les facteurs communs.
Étape 1.1.2.12.1
Factorisez à partir de .
Étape 1.1.2.12.2
Annulez le facteur commun.
Étape 1.1.2.12.3
Réécrivez l’expression.
Étape 1.1.3
Évaluez .
Étape 1.1.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.3.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.1.3.3
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 1.1.3.4
Associez et .
Étape 1.1.3.5
Associez les numérateurs sur le dénominateur commun.
Étape 1.1.3.6
Simplifiez le numérateur.
Étape 1.1.3.6.1
Multipliez par .
Étape 1.1.3.6.2
Soustrayez de .
Étape 1.1.3.7
Associez et .
Étape 1.1.3.8
Associez et .
Étape 1.1.3.9
Multipliez par .
Étape 1.1.3.10
Factorisez à partir de .
Étape 1.1.3.11
Annulez les facteurs communs.
Étape 1.1.3.11.1
Factorisez à partir de .
Étape 1.1.3.11.2
Annulez le facteur commun.
Étape 1.1.3.11.3
Réécrivez l’expression.
Étape 1.1.3.11.4
Divisez par .
Étape 1.1.4
Remettez les termes dans l’ordre.
Étape 1.2
Déterminez la dérivée seconde.
Étape 1.2.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.2.2
Évaluez .
Étape 1.2.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.2.2.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.2.2.3
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 1.2.2.4
Associez et .
Étape 1.2.2.5
Associez les numérateurs sur le dénominateur commun.
Étape 1.2.2.6
Simplifiez le numérateur.
Étape 1.2.2.6.1
Multipliez par .
Étape 1.2.2.6.2
Soustrayez de .
Étape 1.2.2.7
Placez le signe moins devant la fraction.
Étape 1.2.2.8
Associez et .
Étape 1.2.2.9
Associez et .
Étape 1.2.2.10
Placez sur le dénominateur en utilisant la règle de l’exposant négatif .
Étape 1.2.3
Évaluez .
Étape 1.2.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.2.3.2
Réécrivez comme .
Étape 1.2.3.3
Différenciez en utilisant la règle d’enchaînement, qui indique que est où et .
Étape 1.2.3.3.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 1.2.3.3.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.2.3.3.3
Remplacez toutes les occurrences de par .
Étape 1.2.3.4
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.2.3.5
Multipliez les exposants dans .
Étape 1.2.3.5.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 1.2.3.5.2
Multipliez .
Étape 1.2.3.5.2.1
Associez et .
Étape 1.2.3.5.2.2
Multipliez par .
Étape 1.2.3.5.3
Placez le signe moins devant la fraction.
Étape 1.2.3.6
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 1.2.3.7
Associez et .
Étape 1.2.3.8
Associez les numérateurs sur le dénominateur commun.
Étape 1.2.3.9
Simplifiez le numérateur.
Étape 1.2.3.9.1
Multipliez par .
Étape 1.2.3.9.2
Soustrayez de .
Étape 1.2.3.10
Placez le signe moins devant la fraction.
Étape 1.2.3.11
Associez et .
Étape 1.2.3.12
Associez et .
Étape 1.2.3.13
Multipliez par en additionnant les exposants.
Étape 1.2.3.13.1
Déplacez .
Étape 1.2.3.13.2
Utilisez la règle de puissance pour associer des exposants.
Étape 1.2.3.13.3
Associez les numérateurs sur le dénominateur commun.
Étape 1.2.3.13.4
Soustrayez de .
Étape 1.2.3.13.5
Placez le signe moins devant la fraction.
Étape 1.2.3.14
Placez sur le dénominateur en utilisant la règle de l’exposant négatif .
Étape 1.2.3.15
Multipliez par .
Étape 1.2.3.16
Associez et .
Étape 1.2.3.17
Multipliez par .
Étape 1.2.3.18
Placez le signe moins devant la fraction.
Étape 1.3
La dérivée seconde de par rapport à est .
Étape 2
Étape 2.1
Définissez la dérivée seconde égale à .
Étape 2.2
Déterminez le plus petit dénominateur commun des termes dans l’équation.
Étape 2.2.1
Déterminer le plus petit dénominateur commun d’une liste d’expressions équivaut à déterminer le plus petit multiple commun des dénominateurs de ces valeurs.
Étape 2.2.2
Comme contient des nombres et des variables, deux étapes sont nécessaires pour déterminer le plus petit multiple commun. Déterminez le plus petit multiple commun pour la partie numérique puis déterminez le plus petit multiple commun pour la partie variable .
Étape 2.2.3
Le plus petit multiple commun est le plus petit nombre positif dans lequel tous les nombres peuvent être divisés parfaitement.
1. Indiquez les facteurs premiers de chaque nombre.
2. Multipliez chaque facteur le plus grand nombre de fois qu’il apparaît dans un nombre.
Étape 2.2.4
n’a pas de facteur hormis et .
est un nombre premier
Étape 2.2.5
Le nombre n’est pas un nombre premier car il ne comporte qu’un facteur positif, qui est lui-même.
Pas premier
Étape 2.2.6
Le plus petit multiple commun de est le résultat de la multiplication de tous les facteurs premiers le plus grand nombre de fois qu’ils apparaissent dans un nombre ou l’autre.
Étape 2.2.7
Le plus petit multiple commun de est le résultat de la multiplication de tous les facteurs premiers le plus grand nombre de fois qu’ils apparaissent dans un terme ou l’autre.
Étape 2.2.8
Le plus petit multiple commun pour est la partie numérique multipliée par la partie variable.
Étape 2.3
Multiplier chaque terme dans par afin d’éliminer les fractions.
Étape 2.3.1
Multipliez chaque terme dans par .
Étape 2.3.2
Simplifiez le côté gauche.
Étape 2.3.2.1
Simplifiez chaque terme.
Étape 2.3.2.1.1
Réécrivez en utilisant la commutativité de la multiplication.
Étape 2.3.2.1.2
Annulez le facteur commun de .
Étape 2.3.2.1.2.1
Annulez le facteur commun.
Étape 2.3.2.1.2.2
Réécrivez l’expression.
Étape 2.3.2.1.3
Annulez le facteur commun de .
Étape 2.3.2.1.3.1
Factorisez à partir de .
Étape 2.3.2.1.3.2
Annulez le facteur commun.
Étape 2.3.2.1.3.3
Réécrivez l’expression.
Étape 2.3.2.1.4
Divisez par .
Étape 2.3.2.1.5
Simplifiez
Étape 2.3.2.1.6
Annulez le facteur commun de .
Étape 2.3.2.1.6.1
Placez le signe négatif initial dans dans le numérateur.
Étape 2.3.2.1.6.2
Annulez le facteur commun.
Étape 2.3.2.1.6.3
Réécrivez l’expression.
Étape 2.3.3
Simplifiez le côté droit.
Étape 2.3.3.1
Multipliez .
Étape 2.3.3.1.1
Multipliez par .
Étape 2.3.3.1.2
Multipliez par .
Étape 2.4
Résolvez l’équation.
Étape 2.4.1
Ajoutez aux deux côtés de l’équation.
Étape 2.4.2
Divisez chaque terme dans par et simplifiez.
Étape 2.4.2.1
Divisez chaque terme dans par .
Étape 2.4.2.2
Simplifiez le côté gauche.
Étape 2.4.2.2.1
Annulez le facteur commun de .
Étape 2.4.2.2.1.1
Annulez le facteur commun.
Étape 2.4.2.2.1.2
Divisez par .
Étape 2.4.2.3
Simplifiez le côté droit.
Étape 2.4.2.3.1
Divisez par .
Étape 3
Étape 3.1
Remplacez dans pour déterminer la valeur de .
Étape 3.1.1
Remplacez la variable par dans l’expression.
Étape 3.1.2
Simplifiez le résultat.
Étape 3.1.2.1
Simplifiez chaque terme.
Étape 3.1.2.1.1
Un à n’importe quelle puissance est égal à un.
Étape 3.1.2.1.2
Multipliez par .
Étape 3.1.2.1.3
Un à n’importe quelle puissance est égal à un.
Étape 3.1.2.1.4
Multipliez par .
Étape 3.1.2.2
Additionnez et .
Étape 3.1.2.3
La réponse finale est .
Étape 3.2
Le point trouvé en remplaçant dans est . Ce point peut être un point d’inflexion.
Étape 4
Divisez en intervalles autour des points qui pourraient potentiellement être des points d’inflexion.
Étape 5
Étape 5.1
Remplacez la variable par dans l’expression.
Étape 5.2
Simplifiez le résultat.
Étape 5.2.1
Simplifiez chaque terme.
Étape 5.2.1.1
Élevez à la puissance .
Étape 5.2.1.2
Multipliez par .
Étape 5.2.1.3
Divisez par .
Étape 5.2.1.4
Élevez à la puissance .
Étape 5.2.1.5
Multipliez par .
Étape 5.2.1.6
Divisez par .
Étape 5.2.1.7
Multipliez par .
Étape 5.2.2
Soustrayez de .
Étape 5.2.3
La réponse finale est .
Étape 5.3
Sur , la dérivée seconde est . Comme elle est négative, la dérivée seconde est décroissante sur l’intervalle
Diminue sur depuis
Diminue sur depuis
Étape 6
Étape 6.1
Remplacez la variable par dans l’expression.
Étape 6.2
Simplifiez le résultat.
Étape 6.2.1
Simplifiez chaque terme.
Étape 6.2.1.1
Élevez à la puissance .
Étape 6.2.1.2
Multipliez par .
Étape 6.2.1.3
Divisez par .
Étape 6.2.1.4
Élevez à la puissance .
Étape 6.2.1.5
Multipliez par .
Étape 6.2.1.6
Divisez par .
Étape 6.2.1.7
Multipliez par .
Étape 6.2.2
Soustrayez de .
Étape 6.2.3
La réponse finale est .
Étape 6.3
Sur , la dérivée seconde est . Comme elle est positive, la dérivée seconde augmente sur l’intervalle .
Augmente sur depuis
Augmente sur depuis
Étape 7
Un point d’inflexion est un point sur une courbe sur lequel la concavité passe du signe plus au signe moins ou du signe moins au signe plus. Dans ce cas, le point d’inflexion est .
Étape 8