Calcul infinitésimal Exemples

Trouver l'intégrale (6x)/(2^(4x^2))
Étape 1
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 2
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Inversez l’exposant de et placez-le hors du dénominateur.
Étape 2.2
Multipliez les exposants dans .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 2.2.2
Multipliez par .
Étape 3
Laissez . Alors , donc . Réécrivez avec et .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Laissez . Déterminez .
Appuyez ici pour voir plus d’étapes...
Étape 3.1.1
Différenciez .
Étape 3.1.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.1.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 3.1.4
Multipliez par .
Étape 3.2
Réécrivez le problème en utilisant et .
Étape 4
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Placez le signe moins devant la fraction.
Étape 4.2
Associez et .
Étape 5
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 6
Multipliez par .
Étape 7
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 8
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 8.1
Associez et .
Étape 8.2
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 8.2.1
Factorisez à partir de .
Étape 8.2.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 8.2.2.1
Factorisez à partir de .
Étape 8.2.2.2
Annulez le facteur commun.
Étape 8.2.2.3
Réécrivez l’expression.
Étape 8.3
Placez le signe moins devant la fraction.
Étape 9
L’intégrale de par rapport à est .
Étape 10
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 10.1
Réécrivez comme .
Étape 10.2
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 10.2.1
Multipliez par .
Étape 10.2.2
Déplacez à gauche de .
Étape 11
Remplacez toutes les occurrences de par .