Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Écrivez comme une fonction.
Étape 2
Étape 2.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.2
Évaluez .
Étape 2.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2.2
Différenciez en utilisant la règle d’enchaînement, qui indique que est où et .
Étape 2.2.2.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 2.2.2.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.2.2.3
Remplacez toutes les occurrences de par .
Étape 2.2.3
La dérivée de par rapport à est .
Étape 2.2.4
Multipliez par .
Étape 2.2.5
Multipliez par .
Étape 2.3
Évaluez .
Étape 2.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.3.2
La dérivée de par rapport à est .
Étape 3
Étape 3.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 3.2
Évaluez .
Étape 3.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.2.2
Différenciez en utilisant la règle de produit qui indique que est où et .
Étape 3.2.3
La dérivée de par rapport à est .
Étape 3.2.4
La dérivée de par rapport à est .
Étape 3.2.5
Élevez à la puissance .
Étape 3.2.6
Élevez à la puissance .
Étape 3.2.7
Utilisez la règle de puissance pour associer des exposants.
Étape 3.2.8
Additionnez et .
Étape 3.2.9
Élevez à la puissance .
Étape 3.2.10
Élevez à la puissance .
Étape 3.2.11
Utilisez la règle de puissance pour associer des exposants.
Étape 3.2.12
Additionnez et .
Étape 3.3
Évaluez .
Étape 3.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.3.2
La dérivée de par rapport à est .
Étape 3.3.3
Multipliez par .
Étape 3.4
Simplifiez
Étape 3.4.1
Appliquez la propriété distributive.
Étape 3.4.2
Multipliez par .
Étape 4
Pour déterminer les valeurs maximales et minimales locales de la fonction, définissez la dérivée égale à et résolvez.
Étape 5
Étape 5.1
Factorisez à partir de .
Étape 5.1.1
Factorisez à partir de .
Étape 5.1.2
Factorisez à partir de .
Étape 5.1.3
Factorisez à partir de .
Étape 5.2
Réécrivez comme .
Étape 6
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 7
Étape 7.1
Définissez égal à .
Étape 7.2
Résolvez pour .
Étape 7.2.1
Prenez le cosinus inverse des deux côtés de l’équation pour extraire de l’intérieur du cosinus.
Étape 7.2.2
Simplifiez le côté droit.
Étape 7.2.2.1
La valeur exacte de est .
Étape 7.2.3
La fonction cosinus est positive dans les premier et quatrième quadrants. Pour déterminer la deuxième solution, soustrayez l’angle de référence de pour déterminer la solution dans le quatrième quadrant.
Étape 7.2.4
Simplifiez .
Étape 7.2.4.1
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 7.2.4.2
Associez les fractions.
Étape 7.2.4.2.1
Associez et .
Étape 7.2.4.2.2
Associez les numérateurs sur le dénominateur commun.
Étape 7.2.4.3
Simplifiez le numérateur.
Étape 7.2.4.3.1
Multipliez par .
Étape 7.2.4.3.2
Soustrayez de .
Étape 7.2.5
La solution de l’équation est .
Étape 8
Étape 8.1
Définissez égal à .
Étape 8.2
Résolvez pour .
Étape 8.2.1
Ajoutez aux deux côtés de l’équation.
Étape 8.2.2
Divisez chaque terme dans par et simplifiez.
Étape 8.2.2.1
Divisez chaque terme dans par .
Étape 8.2.2.2
Simplifiez le côté gauche.
Étape 8.2.2.2.1
La division de deux valeurs négatives produit une valeur positive.
Étape 8.2.2.2.2
Divisez par .
Étape 8.2.2.3
Simplifiez le côté droit.
Étape 8.2.2.3.1
Divisez par .
Étape 8.2.3
Prenez le sinus inverse des deux côtés de l’équation pour extraire de l’intérieur du sinus.
Étape 8.2.4
Simplifiez le côté droit.
Étape 8.2.4.1
La valeur exacte de est .
Étape 8.2.5
La fonction sinus est négative dans les troisième et quatrième quadrants. Pour déterminer la deuxième solution, soustrayez la solution de pour déterminer un angle de référence. Ajoutez ensuite cet angle de référence à pour déterminer la solution dans le troisième quadrant.
Étape 8.2.6
Simplifiez l’expression pour déterminer la deuxième solution.
Étape 8.2.6.1
Soustrayez de .
Étape 8.2.6.2
L’angle résultant de est positif, inférieur à et coterminal avec .
Étape 8.2.7
La solution de l’équation est .
Étape 9
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 10
Évaluez la dérivée seconde sur . Si la dérivée seconde est positive, il s’agit d’un minimum local. Si elle est négative, il s’agit d’un maximum local.
Étape 11
Étape 11.1
Simplifiez chaque terme.
Étape 11.1.1
La valeur exacte de est .
Étape 11.1.2
L’élévation de à toute puissance positive produit .
Étape 11.1.3
Multipliez par .
Étape 11.1.4
La valeur exacte de est .
Étape 11.1.5
Un à n’importe quelle puissance est égal à un.
Étape 11.1.6
Multipliez par .
Étape 11.1.7
La valeur exacte de est .
Étape 11.1.8
Multipliez par .
Étape 11.2
Simplifiez en ajoutant des nombres.
Étape 11.2.1
Additionnez et .
Étape 11.2.2
Additionnez et .
Étape 12
est un minimum local car la valeur de la dérivée seconde est positive. On parle de test de la dérivée seconde.
est un minimum local
Étape 13
Étape 13.1
Remplacez la variable par dans l’expression.
Étape 13.2
Simplifiez le résultat.
Étape 13.2.1
Simplifiez chaque terme.
Étape 13.2.1.1
La valeur exacte de est .
Étape 13.2.1.2
L’élévation de à toute puissance positive produit .
Étape 13.2.1.3
Multipliez par .
Étape 13.2.1.4
La valeur exacte de est .
Étape 13.2.1.5
Multipliez par .
Étape 13.2.2
Soustrayez de .
Étape 13.2.3
La réponse finale est .
Étape 14
Évaluez la dérivée seconde sur . Si la dérivée seconde est positive, il s’agit d’un minimum local. Si elle est négative, il s’agit d’un maximum local.
Étape 15
Étape 15.1
Simplifiez chaque terme.
Étape 15.1.1
Appliquez l’angle de référence en trouvant l’angle avec des valeurs trigonométriques équivalentes dans le premier quadrant.
Étape 15.1.2
La valeur exacte de est .
Étape 15.1.3
L’élévation de à toute puissance positive produit .
Étape 15.1.4
Multipliez par .
Étape 15.1.5
Appliquez l’angle de référence en trouvant l’angle avec des valeurs trigonométriques équivalentes dans le premier quadrant. Rendez l’expression négative car le sinus est négatif dans le quatrième quadrant.
Étape 15.1.6
La valeur exacte de est .
Étape 15.1.7
Multipliez par .
Étape 15.1.8
Élevez à la puissance .
Étape 15.1.9
Multipliez par .
Étape 15.1.10
Appliquez l’angle de référence en trouvant l’angle avec des valeurs trigonométriques équivalentes dans le premier quadrant. Rendez l’expression négative car le sinus est négatif dans le quatrième quadrant.
Étape 15.1.11
La valeur exacte de est .
Étape 15.1.12
Multipliez .
Étape 15.1.12.1
Multipliez par .
Étape 15.1.12.2
Multipliez par .
Étape 15.2
Simplifiez en ajoutant et en soustrayant.
Étape 15.2.1
Additionnez et .
Étape 15.2.2
Soustrayez de .
Étape 16
Étape 16.1
Divisez en intervalles distincts autour des valeurs qui rendent la dérivée première ou indéfinie.
Étape 16.2
Remplacez tout nombre, tel que , de l’intervalle dans la dérivée première pour vérifier si le résultat est négatif ou positif.
Étape 16.2.1
Remplacez la variable par dans l’expression.
Étape 16.2.2
Simplifiez le résultat.
Étape 16.2.2.1
Simplifiez chaque terme.
Étape 16.2.2.1.1
Évaluez .
Étape 16.2.2.1.2
Multipliez par .
Étape 16.2.2.1.3
Évaluez .
Étape 16.2.2.1.4
Multipliez par .
Étape 16.2.2.1.5
Évaluez .
Étape 16.2.2.1.6
Multipliez par .
Étape 16.2.2.2
Additionnez et .
Étape 16.2.2.3
La réponse finale est .
Étape 16.3
Remplacez tout nombre, tel que , de l’intervalle dans la dérivée première pour vérifier si le résultat est négatif ou positif.
Étape 16.3.1
Remplacez la variable par dans l’expression.
Étape 16.3.2
Simplifiez le résultat.
Étape 16.3.2.1
Simplifiez chaque terme.
Étape 16.3.2.1.1
La valeur exacte de est .
Étape 16.3.2.1.2
Multipliez par .
Étape 16.3.2.1.3
La valeur exacte de est .
Étape 16.3.2.1.4
Multipliez par .
Étape 16.3.2.1.5
La valeur exacte de est .
Étape 16.3.2.1.6
Multipliez par .
Étape 16.3.2.2
Soustrayez de .
Étape 16.3.2.3
La réponse finale est .
Étape 16.4
Remplacez tout nombre, tel que , de l’intervalle dans la dérivée première pour vérifier si le résultat est négatif ou positif.
Étape 16.4.1
Remplacez la variable par dans l’expression.
Étape 16.4.2
Simplifiez le résultat.
Étape 16.4.2.1
Simplifiez chaque terme.
Étape 16.4.2.1.1
Évaluez .
Étape 16.4.2.1.2
Multipliez par .
Étape 16.4.2.1.3
Évaluez .
Étape 16.4.2.1.4
Multipliez par .
Étape 16.4.2.1.5
Évaluez .
Étape 16.4.2.1.6
Multipliez par .
Étape 16.4.2.2
Additionnez et .
Étape 16.4.2.3
La réponse finale est .
Étape 16.5
Remplacez tout nombre, tel que , de l’intervalle dans la dérivée première pour vérifier si le résultat est négatif ou positif.
Étape 16.5.1
Remplacez la variable par dans l’expression.
Étape 16.5.2
Simplifiez le résultat.
Étape 16.5.2.1
Simplifiez chaque terme.
Étape 16.5.2.1.1
Évaluez .
Étape 16.5.2.1.2
Multipliez par .
Étape 16.5.2.1.3
Évaluez .
Étape 16.5.2.1.4
Multipliez par .
Étape 16.5.2.1.5
Évaluez .
Étape 16.5.2.1.6
Multipliez par .
Étape 16.5.2.2
Soustrayez de .
Étape 16.5.2.3
La réponse finale est .
Étape 16.6
Comme la dérivée première a changé de signe de positive à négative autour de , est un maximum local.
est un maximum local
Étape 16.7
Comme la dérivée première a changé de signe de négative à positive autour de , est un minimum local.
est un minimum local
Étape 16.8
Comme la dérivée première a changé de signe de positive à négative autour de , est un maximum local.
est un maximum local
Étape 16.9
Ce sont les extrema locaux pour .
est un maximum local
est un minimum local
est un maximum local
est un maximum local
est un minimum local
est un maximum local
Étape 17