Entrer un problème...
Calcul infinitésimal Exemples
,
Étape 1
Étape 1.1
Éliminez les côtés égaux de chaque équation et associez.
Étape 1.2
Résolvez pour .
Étape 1.2.1
Déplacez tous les termes contenant du côté gauche de l’équation.
Étape 1.2.1.1
Soustrayez des deux côtés de l’équation.
Étape 1.2.1.2
Soustrayez de .
Étape 1.2.2
Divisez chaque terme dans par et simplifiez.
Étape 1.2.2.1
Divisez chaque terme dans par .
Étape 1.2.2.2
Simplifiez le côté gauche.
Étape 1.2.2.2.1
Annulez le facteur commun de .
Étape 1.2.2.2.1.1
Annulez le facteur commun.
Étape 1.2.2.2.1.2
Divisez par .
Étape 1.2.2.3
Simplifiez le côté droit.
Étape 1.2.2.3.1
Annulez le facteur commun à et .
Étape 1.2.2.3.1.1
Factorisez à partir de .
Étape 1.2.2.3.1.2
Annulez les facteurs communs.
Étape 1.2.2.3.1.2.1
Factorisez à partir de .
Étape 1.2.2.3.1.2.2
Annulez le facteur commun.
Étape 1.2.2.3.1.2.3
Réécrivez l’expression.
Étape 1.2.3
Prenez le cosinus inverse des deux côtés de l’équation pour extraire de l’intérieur du cosinus.
Étape 1.2.4
Simplifiez le côté droit.
Étape 1.2.4.1
La valeur exacte de est .
Étape 1.2.5
La fonction cosinus est positive dans les premier et quatrième quadrants. Pour déterminer la deuxième solution, soustrayez l’angle de référence de pour déterminer la solution dans le quatrième quadrant.
Étape 1.2.6
Simplifiez .
Étape 1.2.6.1
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 1.2.6.2
Associez les fractions.
Étape 1.2.6.2.1
Associez et .
Étape 1.2.6.2.2
Associez les numérateurs sur le dénominateur commun.
Étape 1.2.6.3
Simplifiez le numérateur.
Étape 1.2.6.3.1
Multipliez par .
Étape 1.2.6.3.2
Soustrayez de .
Étape 1.2.7
Déterminez la période de .
Étape 1.2.7.1
La période de la fonction peut être calculée en utilisant .
Étape 1.2.7.2
Remplacez par dans la formule pour la période.
Étape 1.2.7.3
La valeur absolue est la distance entre un nombre et zéro. La distance entre et est .
Étape 1.2.7.4
Divisez par .
Étape 1.2.8
La période de la fonction est si bien que les valeurs se répètent tous les radians dans les deux sens.
, pour tout entier
, pour tout entier
Étape 1.3
Évaluez quand .
Étape 1.3.1
Remplacez par .
Étape 1.3.2
Remplacez par dans et résolvez .
Étape 1.3.2.1
Supprimez les parenthèses.
Étape 1.3.2.2
Remettez dans l’ordre et .
Étape 1.4
Évaluez quand .
Étape 1.4.1
Remplacez par .
Étape 1.4.2
Remplacez par dans et résolvez .
Étape 1.4.2.1
Supprimez les parenthèses.
Étape 1.4.2.2
Remettez dans l’ordre et .
Étape 1.5
La solution du système d’équations est l’ensemble des valeurs qui rendent le système vrai.
Étape 1.6
Indiquez toutes les solutions.
Étape 2
La surface entre les courbes données n’est pas délimitée.
Aire non délimitée
Étape 3