Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Déterminez la dérivée première.
Étape 1.1.1
Réécrivez comme .
Étape 1.1.2
Développez à l’aide de la méthode FOIL.
Étape 1.1.2.1
Appliquez la propriété distributive.
Étape 1.1.2.2
Appliquez la propriété distributive.
Étape 1.1.2.3
Appliquez la propriété distributive.
Étape 1.1.3
Simplifiez et associez les termes similaires.
Étape 1.1.3.1
Simplifiez chaque terme.
Étape 1.1.3.1.1
Multipliez par .
Étape 1.1.3.1.2
Multipliez par .
Étape 1.1.3.1.3
Multipliez par .
Étape 1.1.3.1.4
Réécrivez en utilisant la commutativité de la multiplication.
Étape 1.1.3.1.5
Multipliez par en additionnant les exposants.
Étape 1.1.3.1.5.1
Déplacez .
Étape 1.1.3.1.5.2
Multipliez par .
Étape 1.1.3.1.6
Multipliez par .
Étape 1.1.3.2
Soustrayez de .
Étape 1.1.4
Différenciez en utilisant la règle de produit qui indique que est où et .
Étape 1.1.5
Différenciez.
Étape 1.1.5.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.1.5.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.5.3
Additionnez et .
Étape 1.1.5.4
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.5.5
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.1.5.6
Multipliez par .
Étape 1.1.5.7
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.5.8
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.1.5.9
Multipliez par .
Étape 1.1.5.10
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.1.5.11
Déplacez à gauche de .
Étape 1.1.6
Simplifiez
Étape 1.1.6.1
Appliquez la propriété distributive.
Étape 1.1.6.2
Appliquez la propriété distributive.
Étape 1.1.6.3
Appliquez la propriété distributive.
Étape 1.1.6.4
Associez des termes.
Étape 1.1.6.4.1
Déplacez à gauche de .
Étape 1.1.6.4.2
Multipliez par en additionnant les exposants.
Étape 1.1.6.4.2.1
Déplacez .
Étape 1.1.6.4.2.2
Multipliez par .
Étape 1.1.6.4.2.2.1
Élevez à la puissance .
Étape 1.1.6.4.2.2.2
Utilisez la règle de puissance pour associer des exposants.
Étape 1.1.6.4.2.3
Additionnez et .
Étape 1.1.6.4.3
Déplacez à gauche de .
Étape 1.1.6.4.4
Multipliez par .
Étape 1.1.6.4.5
Multipliez par .
Étape 1.1.6.4.6
Élevez à la puissance .
Étape 1.1.6.4.7
Élevez à la puissance .
Étape 1.1.6.4.8
Utilisez la règle de puissance pour associer des exposants.
Étape 1.1.6.4.9
Additionnez et .
Étape 1.1.6.4.10
Multipliez par .
Étape 1.1.6.4.11
Élevez à la puissance .
Étape 1.1.6.4.12
Utilisez la règle de puissance pour associer des exposants.
Étape 1.1.6.4.13
Additionnez et .
Étape 1.1.6.4.14
Soustrayez de .
Étape 1.1.6.4.15
Additionnez et .
Étape 1.1.6.5
Remettez les termes dans l’ordre.
Étape 1.2
Déterminez la dérivée seconde.
Étape 1.2.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.2.2
Évaluez .
Étape 1.2.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.2.2.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.2.2.3
Multipliez par .
Étape 1.2.3
Évaluez .
Étape 1.2.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.2.3.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.2.3.3
Multipliez par .
Étape 1.2.4
Évaluez .
Étape 1.2.4.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.2.4.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.2.4.3
Multipliez par .
Étape 1.3
La dérivée seconde de par rapport à est .
Étape 2
Étape 2.1
Définissez la dérivée seconde égale à .
Étape 2.2
Factorisez à partir de .
Étape 2.2.1
Factorisez à partir de .
Étape 2.2.2
Factorisez à partir de .
Étape 2.2.3
Factorisez à partir de .
Étape 2.2.4
Factorisez à partir de .
Étape 2.2.5
Factorisez à partir de .
Étape 2.3
Divisez chaque terme dans par et simplifiez.
Étape 2.3.1
Divisez chaque terme dans par .
Étape 2.3.2
Simplifiez le côté gauche.
Étape 2.3.2.1
Annulez le facteur commun de .
Étape 2.3.2.1.1
Annulez le facteur commun.
Étape 2.3.2.1.2
Divisez par .
Étape 2.3.3
Simplifiez le côté droit.
Étape 2.3.3.1
Divisez par .
Étape 2.4
Utilisez la formule quadratique pour déterminer les solutions.
Étape 2.5
Remplacez les valeurs , et dans la formule quadratique et résolvez pour .
Étape 2.6
Simplifiez
Étape 2.6.1
Simplifiez le numérateur.
Étape 2.6.1.1
Élevez à la puissance .
Étape 2.6.1.2
Multipliez .
Étape 2.6.1.2.1
Multipliez par .
Étape 2.6.1.2.2
Multipliez par .
Étape 2.6.1.3
Soustrayez de .
Étape 2.6.1.4
Réécrivez comme .
Étape 2.6.1.4.1
Factorisez à partir de .
Étape 2.6.1.4.2
Réécrivez comme .
Étape 2.6.1.5
Extrayez les termes de sous le radical.
Étape 2.6.2
Multipliez par .
Étape 2.6.3
Simplifiez .
Étape 2.7
Simplifiez l’expression pour résoudre la partie du .
Étape 2.7.1
Simplifiez le numérateur.
Étape 2.7.1.1
Élevez à la puissance .
Étape 2.7.1.2
Multipliez .
Étape 2.7.1.2.1
Multipliez par .
Étape 2.7.1.2.2
Multipliez par .
Étape 2.7.1.3
Soustrayez de .
Étape 2.7.1.4
Réécrivez comme .
Étape 2.7.1.4.1
Factorisez à partir de .
Étape 2.7.1.4.2
Réécrivez comme .
Étape 2.7.1.5
Extrayez les termes de sous le radical.
Étape 2.7.2
Multipliez par .
Étape 2.7.3
Simplifiez .
Étape 2.7.4
Remplacez le par .
Étape 2.8
Simplifiez l’expression pour résoudre la partie du .
Étape 2.8.1
Simplifiez le numérateur.
Étape 2.8.1.1
Élevez à la puissance .
Étape 2.8.1.2
Multipliez .
Étape 2.8.1.2.1
Multipliez par .
Étape 2.8.1.2.2
Multipliez par .
Étape 2.8.1.3
Soustrayez de .
Étape 2.8.1.4
Réécrivez comme .
Étape 2.8.1.4.1
Factorisez à partir de .
Étape 2.8.1.4.2
Réécrivez comme .
Étape 2.8.1.5
Extrayez les termes de sous le radical.
Étape 2.8.2
Multipliez par .
Étape 2.8.3
Simplifiez .
Étape 2.8.4
Remplacez le par .
Étape 2.9
La réponse finale est la combinaison des deux solutions.
Étape 3
Étape 3.1
Remplacez dans pour déterminer la valeur de .
Étape 3.1.1
Remplacez la variable par dans l’expression.
Étape 3.1.2
Simplifiez le résultat.
Étape 3.1.2.1
Élevez à la puissance .
Étape 3.1.2.2
Multipliez par .
Étape 3.1.2.3
Soustrayez de .
Étape 3.1.2.4
Élevez à la puissance .
Étape 3.1.2.5
Multipliez par .
Étape 3.1.2.6
La réponse finale est .
Étape 3.2
Le point trouvé en remplaçant dans est . Ce point peut être un point d’inflexion.
Étape 3.3
Remplacez dans pour déterminer la valeur de .
Étape 3.3.1
Remplacez la variable par dans l’expression.
Étape 3.3.2
Simplifiez le résultat.
Étape 3.3.2.1
Élevez à la puissance .
Étape 3.3.2.2
Multipliez par .
Étape 3.3.2.3
Soustrayez de .
Étape 3.3.2.4
Élevez à la puissance .
Étape 3.3.2.5
Multipliez par .
Étape 3.3.2.6
La réponse finale est .
Étape 3.4
Le point trouvé en remplaçant dans est . Ce point peut être un point d’inflexion.
Étape 3.5
Déterminez les points qui pourraient être des points d’inflexion.
Étape 4
Divisez en intervalles autour des points qui pourraient potentiellement être des points d’inflexion.
Étape 5
Étape 5.1
Remplacez la variable par dans l’expression.
Étape 5.2
Simplifiez le résultat.
Étape 5.2.1
Simplifiez chaque terme.
Étape 5.2.1.1
Élevez à la puissance .
Étape 5.2.1.2
Multipliez par .
Étape 5.2.1.3
Multipliez par .
Étape 5.2.2
Simplifiez en ajoutant et en soustrayant.
Étape 5.2.2.1
Soustrayez de .
Étape 5.2.2.2
Additionnez et .
Étape 5.2.3
La réponse finale est .
Étape 5.3
Sur , la dérivée seconde est . Comme elle est positive, la dérivée seconde augmente sur l’intervalle .
Augmente sur depuis
Augmente sur depuis
Étape 6
Étape 6.1
Remplacez la variable par dans l’expression.
Étape 6.2
Simplifiez le résultat.
Étape 6.2.1
Simplifiez chaque terme.
Étape 6.2.1.1
Élevez à la puissance .
Étape 6.2.1.2
Multipliez par .
Étape 6.2.1.3
Multipliez par .
Étape 6.2.2
Simplifiez en ajoutant et en soustrayant.
Étape 6.2.2.1
Soustrayez de .
Étape 6.2.2.2
Additionnez et .
Étape 6.2.3
La réponse finale est .
Étape 6.3
Sur , la dérivée seconde est . Comme elle est négative, la dérivée seconde est décroissante sur l’intervalle
Diminue sur depuis
Diminue sur depuis
Étape 7
Étape 7.1
Remplacez la variable par dans l’expression.
Étape 7.2
Simplifiez le résultat.
Étape 7.2.1
Simplifiez chaque terme.
Étape 7.2.1.1
Élevez à la puissance .
Étape 7.2.1.2
Multipliez par .
Étape 7.2.1.3
Multipliez par .
Étape 7.2.2
Simplifiez en ajoutant et en soustrayant.
Étape 7.2.2.1
Soustrayez de .
Étape 7.2.2.2
Additionnez et .
Étape 7.2.3
La réponse finale est .
Étape 7.3
Sur , la dérivée seconde est . Comme elle est positive, la dérivée seconde augmente sur l’intervalle .
Augmente sur depuis
Augmente sur depuis
Étape 8
Un point d’inflexion est un point sur une courbe sur lequel la concavité passe du signe plus au signe moins ou du signe moins au signe plus. Dans ce cas, les points d’inflexion sont .
Étape 9