Entrer un problème...
Calcul infinitésimal Exemples
,
Étape 1
Étape 1.1
Différenciez les deux côtés de l’équation.
Étape 1.2
Différenciez le côté gauche de l’équation.
Étape 1.2.1
Différenciez.
Étape 1.2.1.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.2.1.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.2.2
Évaluez .
Étape 1.2.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.2.2.2
Différenciez en utilisant la règle d’enchaînement, qui indique que est où et .
Étape 1.2.2.2.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 1.2.2.2.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.2.2.2.3
Remplacez toutes les occurrences de par .
Étape 1.2.2.3
Réécrivez comme .
Étape 1.2.2.4
Multipliez par .
Étape 1.2.3
Remettez les termes dans l’ordre.
Étape 1.3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.4
Réformez l’équation en définissant le côté gauche égal au côté droit.
Étape 1.5
Résolvez .
Étape 1.5.1
Soustrayez des deux côtés de l’équation.
Étape 1.5.2
Divisez chaque terme dans par et simplifiez.
Étape 1.5.2.1
Divisez chaque terme dans par .
Étape 1.5.2.2
Simplifiez le côté gauche.
Étape 1.5.2.2.1
Annulez le facteur commun de .
Étape 1.5.2.2.1.1
Annulez le facteur commun.
Étape 1.5.2.2.1.2
Réécrivez l’expression.
Étape 1.5.2.2.2
Annulez le facteur commun de .
Étape 1.5.2.2.2.1
Annulez le facteur commun.
Étape 1.5.2.2.2.2
Divisez par .
Étape 1.5.2.3
Simplifiez le côté droit.
Étape 1.5.2.3.1
Annulez le facteur commun de .
Étape 1.5.2.3.1.1
Annulez le facteur commun.
Étape 1.5.2.3.1.2
Réécrivez l’expression.
Étape 1.6
Remplacez par.
Étape 1.7
Évaluez sur sur .
Étape 1.7.1
Remplacez la variable par dans l’expression.
Étape 1.7.2
Remplacez la variable par dans l’expression.
Étape 1.7.3
L’expression contient une division par . L’expression est indéfinie.
Indéfini
Indéfini
Indéfini
Étape 2
La pente de la droite est indéfinie, ce qui signifie qu’elle est perpendiculaire à l’abscisse sur .
Étape 3