Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Écrivez comme une fonction.
Étape 2
La fonction peut être trouvée en déterminant l’intégrale infinie de la dérivée .
Étape 3
Définissez l’intégrale à résoudre.
Étape 4
Étape 4.1
Laissez . Déterminez .
Étape 4.1.1
Différenciez .
Étape 4.1.2
Différenciez en utilisant la règle de produit qui indique que est où et .
Étape 4.1.3
Différenciez.
Étape 4.1.3.1
Réécrivez comme .
Étape 4.1.3.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 4.1.3.3
Multipliez.
Étape 4.1.3.3.1
Multipliez par .
Étape 4.1.3.3.2
Multipliez par .
Étape 4.1.3.4
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 4.1.3.5
Simplifiez l’expression.
Étape 4.1.3.5.1
Multipliez par .
Étape 4.1.3.5.2
Additionnez et .
Étape 4.1.4
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 4.2
Réécrivez le problème en utilisant et .
Étape 5
L’intégrale de par rapport à est .
Étape 6
Remplacez toutes les occurrences de par .
Étape 7
La réponse est la dérivée première de la fonction .