Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Écrivez comme une fonction.
Étape 2
La fonction peut être trouvée en déterminant l’intégrale infinie de la dérivée .
Étape 3
Définissez l’intégrale à résoudre.
Étape 4
Étape 4.1
Décomposez la fraction et multipliez par le dénominateur commun.
Étape 4.1.1
Factorisez à partir de .
Étape 4.1.1.1
Factorisez à partir de .
Étape 4.1.1.2
Factorisez à partir de .
Étape 4.1.1.3
Factorisez à partir de .
Étape 4.1.1.4
Multipliez par .
Étape 4.1.2
Pour chaque facteur dans le dénominateur, créez une nouvelle fraction en utilisant le facteur comme dénominateur et une valeur inconnue comme numérateur. Comme le facteur dans le dénominateur est linéaire, placez une variable unique à sa place .
Étape 4.1.3
Multipliez chaque fraction dans l’équation par le dénominateur de l’expression d’origine. Dans ce cas, le dénominateur est .
Étape 4.1.4
Annulez le facteur commun de .
Étape 4.1.4.1
Annulez le facteur commun.
Étape 4.1.4.2
Réécrivez l’expression.
Étape 4.1.5
Annulez le facteur commun de .
Étape 4.1.5.1
Annulez le facteur commun.
Étape 4.1.5.2
Réécrivez l’expression.
Étape 4.1.6
Simplifiez chaque terme.
Étape 4.1.6.1
Annulez le facteur commun de .
Étape 4.1.6.1.1
Annulez le facteur commun.
Étape 4.1.6.1.2
Divisez par .
Étape 4.1.6.2
Appliquez la propriété distributive.
Étape 4.1.6.3
Déplacez à gauche de .
Étape 4.1.6.4
Réécrivez en utilisant la commutativité de la multiplication.
Étape 4.1.6.5
Annulez le facteur commun de .
Étape 4.1.6.5.1
Annulez le facteur commun.
Étape 4.1.6.5.2
Divisez par .
Étape 4.1.7
Simplifiez l’expression.
Étape 4.1.7.1
Déplacez .
Étape 4.1.7.2
Remettez dans l’ordre et .
Étape 4.1.7.3
Déplacez .
Étape 4.2
Créez des équations pour les variables de fractions partielles et utilisez-les pour définir un système d’équations.
Étape 4.2.1
Créez une équation pour les variables de fractions partielles en faisant correspondre les coefficients de de chaque côté de l’équation. Pour que l’équation soit égale, les coefficients équivalents de chaque côté de l’équation doivent être égaux.
Étape 4.2.2
Créez une équation pour les variables de fractions partielles en faisant correspondre les coefficients des termes qui ne contiennent pas . Pour que l’équation soit égale, les coefficients équivalents de chaque côté de l’équation doivent être égaux.
Étape 4.2.3
Définissez le système d’équations pour déterminer les coefficients des fractions partielles.
Étape 4.3
Résolvez le système d’équations.
Étape 4.3.1
Résolvez dans .
Étape 4.3.1.1
Réécrivez l’équation comme .
Étape 4.3.1.2
Divisez chaque terme dans par et simplifiez.
Étape 4.3.1.2.1
Divisez chaque terme dans par .
Étape 4.3.1.2.2
Simplifiez le côté gauche.
Étape 4.3.1.2.2.1
Annulez le facteur commun de .
Étape 4.3.1.2.2.1.1
Annulez le facteur commun.
Étape 4.3.1.2.2.1.2
Divisez par .
Étape 4.3.2
Remplacez toutes les occurrences de par dans chaque équation.
Étape 4.3.2.1
Remplacez toutes les occurrences de dans par .
Étape 4.3.2.2
Simplifiez le côté droit.
Étape 4.3.2.2.1
Réécrivez comme .
Étape 4.3.3
Résolvez dans .
Étape 4.3.3.1
Réécrivez l’équation comme .
Étape 4.3.3.2
Ajoutez aux deux côtés de l’équation.
Étape 4.3.4
Résolvez le système d’équations.
Étape 4.3.5
Indiquez toutes les solutions.
Étape 4.4
Remplacez chacun des coefficients de fractions partielles dans par les valeurs trouvées pour et .
Étape 4.5
Simplifiez
Étape 4.5.1
Multipliez le numérateur par la réciproque du dénominateur.
Étape 4.5.2
Multipliez par .
Étape 4.5.3
Multipliez le numérateur par la réciproque du dénominateur.
Étape 4.5.4
Multipliez par .
Étape 5
Séparez l’intégrale unique en plusieurs intégrales.
Étape 6
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 7
L’intégrale de par rapport à est .
Étape 8
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 9
Étape 9.1
Laissez . Déterminez .
Étape 9.1.1
Réécrivez.
Étape 9.1.2
Divisez par .
Étape 9.2
Réécrivez le problème en utilisant et .
Étape 10
Placez le signe moins devant la fraction.
Étape 11
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 12
L’intégrale de par rapport à est .
Étape 13
Étape 13.1
Simplifiez
Étape 13.2
Associez et .
Étape 14
Remplacez toutes les occurrences de par .
Étape 15
Remettez les termes dans l’ordre.
Étape 16
La réponse est la dérivée première de la fonction .