Calcul infinitésimal Exemples

Trouver où il y a croissance et décroissance à l'aide des Dérivées f(x)=100x(2x+3)(x-5)
Étape 1
Déterminez la dérivée première.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Déterminez la dérivée première.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.2
Différenciez en utilisant la règle de produit qui indique que est et .
Étape 1.1.3
Différenciez.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.3.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.1.3.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.1.3.3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.3.4
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.3.4.1
Additionnez et .
Étape 1.1.3.4.2
Multipliez par .
Étape 1.1.4
Différenciez en utilisant la règle de produit qui indique que est et .
Étape 1.1.5
Différenciez.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.5.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.1.5.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.5.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.1.5.4
Multipliez par .
Étape 1.1.5.5
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.5.6
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.5.6.1
Additionnez et .
Étape 1.1.5.6.2
Déplacez à gauche de .
Étape 1.1.5.7
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.1.5.8
Simplifiez en ajoutant des termes.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.5.8.1
Multipliez par .
Étape 1.1.5.8.2
Additionnez et .
Étape 1.1.6
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 1.1.6.1
Appliquez la propriété distributive.
Étape 1.1.6.2
Appliquez la propriété distributive.
Étape 1.1.6.3
Appliquez la propriété distributive.
Étape 1.1.6.4
Appliquez la propriété distributive.
Étape 1.1.6.5
Appliquez la propriété distributive.
Étape 1.1.6.6
Appliquez la propriété distributive.
Étape 1.1.6.7
Associez des termes.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.6.7.1
Élevez à la puissance .
Étape 1.1.6.7.2
Élevez à la puissance .
Étape 1.1.6.7.3
Utilisez la règle de puissance pour associer des exposants.
Étape 1.1.6.7.4
Additionnez et .
Étape 1.1.6.7.5
Multipliez par .
Étape 1.1.6.7.6
Déplacez à gauche de .
Étape 1.1.6.7.7
Multipliez par .
Étape 1.1.6.7.8
Élevez à la puissance .
Étape 1.1.6.7.9
Élevez à la puissance .
Étape 1.1.6.7.10
Utilisez la règle de puissance pour associer des exposants.
Étape 1.1.6.7.11
Additionnez et .
Étape 1.1.6.7.12
Multipliez par .
Étape 1.1.6.7.13
Multipliez par .
Étape 1.1.6.7.14
Multipliez par .
Étape 1.1.6.7.15
Déplacez à gauche de .
Étape 1.1.6.7.16
Multipliez par .
Étape 1.1.6.7.17
Multipliez par .
Étape 1.1.6.7.18
Multipliez par .
Étape 1.1.6.7.19
Additionnez et .
Étape 1.1.6.7.20
Additionnez et .
Étape 1.1.6.7.21
Soustrayez de .
Étape 1.2
La dérivée première de par rapport à est .
Étape 2
Définissez la dérivée première égale à puis résolvez l’équation .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Définissez la dérivée première égale à .
Étape 2.2
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Factorisez à partir de .
Étape 2.2.2
Factorisez à partir de .
Étape 2.2.3
Factorisez à partir de .
Étape 2.2.4
Factorisez à partir de .
Étape 2.2.5
Factorisez à partir de .
Étape 2.3
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Divisez chaque terme dans par .
Étape 2.3.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.2.1.1
Annulez le facteur commun.
Étape 2.3.2.1.2
Divisez par .
Étape 2.3.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.3.1
Divisez par .
Étape 2.4
Utilisez la formule quadratique pour déterminer les solutions.
Étape 2.5
Remplacez les valeurs , et dans la formule quadratique et résolvez pour .
Étape 2.6
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 2.6.1
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 2.6.1.1
Élevez à la puissance .
Étape 2.6.1.2
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 2.6.1.2.1
Multipliez par .
Étape 2.6.1.2.2
Multipliez par .
Étape 2.6.1.3
Additionnez et .
Étape 2.6.1.4
Réécrivez comme .
Appuyez ici pour voir plus d’étapes...
Étape 2.6.1.4.1
Factorisez à partir de .
Étape 2.6.1.4.2
Réécrivez comme .
Étape 2.6.1.5
Extrayez les termes de sous le radical.
Étape 2.6.2
Multipliez par .
Étape 2.6.3
Simplifiez .
Étape 2.7
Simplifiez l’expression pour résoudre la partie du .
Appuyez ici pour voir plus d’étapes...
Étape 2.7.1
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 2.7.1.1
Élevez à la puissance .
Étape 2.7.1.2
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 2.7.1.2.1
Multipliez par .
Étape 2.7.1.2.2
Multipliez par .
Étape 2.7.1.3
Additionnez et .
Étape 2.7.1.4
Réécrivez comme .
Appuyez ici pour voir plus d’étapes...
Étape 2.7.1.4.1
Factorisez à partir de .
Étape 2.7.1.4.2
Réécrivez comme .
Étape 2.7.1.5
Extrayez les termes de sous le radical.
Étape 2.7.2
Multipliez par .
Étape 2.7.3
Simplifiez .
Étape 2.7.4
Remplacez le par .
Étape 2.8
Simplifiez l’expression pour résoudre la partie du .
Appuyez ici pour voir plus d’étapes...
Étape 2.8.1
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 2.8.1.1
Élevez à la puissance .
Étape 2.8.1.2
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 2.8.1.2.1
Multipliez par .
Étape 2.8.1.2.2
Multipliez par .
Étape 2.8.1.3
Additionnez et .
Étape 2.8.1.4
Réécrivez comme .
Appuyez ici pour voir plus d’étapes...
Étape 2.8.1.4.1
Factorisez à partir de .
Étape 2.8.1.4.2
Réécrivez comme .
Étape 2.8.1.5
Extrayez les termes de sous le radical.
Étape 2.8.2
Multipliez par .
Étape 2.8.3
Simplifiez .
Étape 2.8.4
Remplacez le par .
Étape 2.9
La réponse finale est la combinaison des deux solutions.
Étape 3
Les valeurs qui rendent la dérivée égale à sont .
Étape 4
Divisez en intervalles distincts autour des valeurs qui rendent la dérivée ou indéfinie.
Étape 5
Remplacez une valeur de l’intervalle dans la dérivée afin de déterminer si la fonction est croissante ou décroissante.
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Remplacez la variable par dans l’expression.
Étape 5.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1.1
Élevez à la puissance .
Étape 5.2.1.2
Multipliez par .
Étape 5.2.1.3
Multipliez par .
Étape 5.2.2
Simplifiez en ajoutant et en soustrayant.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.2.1
Additionnez et .
Étape 5.2.2.2
Soustrayez de .
Étape 5.2.3
La réponse finale est .
Étape 5.3
Sur la dérivée est . Comme elle est positive, la fonction augmente sur .
Augmente sur depuis
Augmente sur depuis
Étape 6
Remplacez une valeur de l’intervalle dans la dérivée afin de déterminer si la fonction est croissante ou décroissante.
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Remplacez la variable par dans l’expression.
Étape 6.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 6.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 6.2.1.1
Élevez à la puissance .
Étape 6.2.1.2
Multipliez par .
Étape 6.2.1.3
Multipliez par .
Étape 6.2.2
Simplifiez en soustrayant des nombres.
Appuyez ici pour voir plus d’étapes...
Étape 6.2.2.1
Soustrayez de .
Étape 6.2.2.2
Soustrayez de .
Étape 6.2.3
La réponse finale est .
Étape 6.3
Sur la dérivée est . Comme elle est négative, la fonction diminue sur .
Diminue sur depuis
Diminue sur depuis
Étape 7
Remplacez une valeur de l’intervalle dans la dérivée afin de déterminer si la fonction est croissante ou décroissante.
Appuyez ici pour voir plus d’étapes...
Étape 7.1
Remplacez la variable par dans l’expression.
Étape 7.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 7.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 7.2.1.1
Élevez à la puissance .
Étape 7.2.1.2
Multipliez par .
Étape 7.2.1.3
Multipliez par .
Étape 7.2.2
Simplifiez en soustrayant des nombres.
Appuyez ici pour voir plus d’étapes...
Étape 7.2.2.1
Soustrayez de .
Étape 7.2.2.2
Soustrayez de .
Étape 7.2.3
La réponse finale est .
Étape 7.3
Sur la dérivée est . Comme elle est positive, la fonction augmente sur .
Augmente sur depuis
Augmente sur depuis
Étape 8
Indiquez les intervalles sur lesquels la fonction est croissante et décroissante.
Augmente sur :
Diminue sur :
Étape 9