Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Déterminez la dérivée première.
Étape 1.1.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.1.2
Évaluez .
Étape 1.1.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.2.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.1.2.3
Multipliez par .
Étape 1.1.3
Évaluez .
Étape 1.1.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.3.2
La dérivée de par rapport à est .
Étape 1.1.3.3
Associez et .
Étape 1.1.3.4
Placez le signe moins devant la fraction.
Étape 1.2
La dérivée première de par rapport à est .
Étape 2
Étape 2.1
Définissez la dérivée première égale à .
Étape 2.2
Déterminez le plus petit dénominateur commun des termes dans l’équation.
Étape 2.2.1
Déterminer le plus petit dénominateur commun d’une liste d’expressions équivaut à déterminer le plus petit multiple commun des dénominateurs de ces valeurs.
Étape 2.2.2
Le plus petit multiple commun de toute expression est l’expression.
Étape 2.3
Multiplier chaque terme dans par afin d’éliminer les fractions.
Étape 2.3.1
Multipliez chaque terme dans par .
Étape 2.3.2
Simplifiez le côté gauche.
Étape 2.3.2.1
Simplifiez chaque terme.
Étape 2.3.2.1.1
Multipliez par en additionnant les exposants.
Étape 2.3.2.1.1.1
Déplacez .
Étape 2.3.2.1.1.2
Multipliez par .
Étape 2.3.2.1.2
Annulez le facteur commun de .
Étape 2.3.2.1.2.1
Placez le signe négatif initial dans dans le numérateur.
Étape 2.3.2.1.2.2
Annulez le facteur commun.
Étape 2.3.2.1.2.3
Réécrivez l’expression.
Étape 2.3.3
Simplifiez le côté droit.
Étape 2.3.3.1
Multipliez par .
Étape 2.4
Résolvez l’équation.
Étape 2.4.1
Ajoutez aux deux côtés de l’équation.
Étape 2.4.2
Divisez chaque terme dans par et simplifiez.
Étape 2.4.2.1
Divisez chaque terme dans par .
Étape 2.4.2.2
Simplifiez le côté gauche.
Étape 2.4.2.2.1
Annulez le facteur commun de .
Étape 2.4.2.2.1.1
Annulez le facteur commun.
Étape 2.4.2.2.1.2
Divisez par .
Étape 2.4.2.3
Simplifiez le côté droit.
Étape 2.4.2.3.1
Divisez par .
Étape 2.4.3
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 2.4.4
Simplifiez .
Étape 2.4.4.1
Réécrivez comme .
Étape 2.4.4.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 2.4.5
La solution complète est le résultat des parties positive et négative de la solution.
Étape 2.4.5.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 2.4.5.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 2.4.5.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 3
Les valeurs qui rendent la dérivée égale à sont .
Étape 4
Définissez le dénominateur dans égal à pour déterminer où l’expression est indéfinie.
Étape 5
Divisez en intervalles distincts autour des valeurs qui rendent la dérivée ou indéfinie.
Étape 6
Excluez les intervalles qui ne sont pas dans le domaine.
Étape 7
Étape 7.1
Remplacez la variable par dans l’expression.
Étape 7.2
Simplifiez le résultat.
Étape 7.2.1
Simplifiez chaque terme.
Étape 7.2.1.1
Annulez le facteur commun de .
Étape 7.2.1.1.1
Placez le signe négatif initial dans dans le numérateur.
Étape 7.2.1.1.2
Factorisez à partir de .
Étape 7.2.1.1.3
Annulez le facteur commun.
Étape 7.2.1.1.4
Réécrivez l’expression.
Étape 7.2.1.2
Multipliez par .
Étape 7.2.1.3
Multipliez le numérateur par la réciproque du dénominateur.
Étape 7.2.1.4
Annulez le facteur commun de .
Étape 7.2.1.4.1
Placez le signe négatif initial dans dans le numérateur.
Étape 7.2.1.4.2
Factorisez à partir de .
Étape 7.2.1.4.3
Annulez le facteur commun.
Étape 7.2.1.4.4
Réécrivez l’expression.
Étape 7.2.1.5
Multipliez par .
Étape 7.2.1.6
Multipliez par .
Étape 7.2.2
Additionnez et .
Étape 7.2.3
La réponse finale est .
Étape 8
Excluez les intervalles qui ne sont pas dans le domaine.
Étape 9
Étape 9.1
Remplacez la variable par dans l’expression.
Étape 9.2
Simplifiez le résultat.
Étape 9.2.1
Simplifiez chaque terme.
Étape 9.2.1.1
Annulez le facteur commun de .
Étape 9.2.1.1.1
Factorisez à partir de .
Étape 9.2.1.1.2
Annulez le facteur commun.
Étape 9.2.1.1.3
Réécrivez l’expression.
Étape 9.2.1.2
Multipliez par .
Étape 9.2.1.3
Multipliez le numérateur par la réciproque du dénominateur.
Étape 9.2.1.4
Annulez le facteur commun de .
Étape 9.2.1.4.1
Factorisez à partir de .
Étape 9.2.1.4.2
Annulez le facteur commun.
Étape 9.2.1.4.3
Réécrivez l’expression.
Étape 9.2.1.5
Multipliez par .
Étape 9.2.1.6
Multipliez par .
Étape 9.2.2
Soustrayez de .
Étape 9.2.3
La réponse finale est .
Étape 9.3
Sur la dérivée est . Comme elle est négative, la fonction diminue sur .
Diminue sur depuis
Diminue sur depuis
Étape 10
Excluez les intervalles qui ne sont pas dans le domaine.
Étape 11
Étape 11.1
Remplacez la variable par dans l’expression.
Étape 11.2
Simplifiez le résultat.
Étape 11.2.1
Simplifiez chaque terme.
Étape 11.2.1.1
Multipliez par .
Étape 11.2.1.2
Divisez par .
Étape 11.2.1.3
Multipliez par .
Étape 11.2.2
Soustrayez de .
Étape 11.2.3
La réponse finale est .
Étape 11.3
Sur la dérivée est . Comme elle est positive, la fonction augmente sur .
Augmente sur depuis
Augmente sur depuis
Étape 12
Indiquez les intervalles sur lesquels la fonction est croissante et décroissante.
Augmente sur :
Diminue sur :
Étape 13