Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Prenez la limite du numérateur et la limite du dénominateur.
Étape 1.2
Évaluez la limite du numérateur.
Étape 1.2.1
Évaluez la limite.
Étape 1.2.1.1
Divisez la limite en utilisant la règle de la somme des limites sur la limite lorsque approche de .
Étape 1.2.1.2
Évaluez la limite de qui est constante lorsque approche de .
Étape 1.2.2
Comme l’exposant approche de , la quantité approche de .
Étape 1.2.3
Simplifiez la réponse.
Étape 1.2.3.1
Une constante non nulle fois l’infini est l’infini.
Étape 1.2.3.2
L’infini plus ou moins un nombre est l’infini.
Étape 1.3
Évaluez la limite du dénominateur.
Étape 1.3.1
Évaluez la limite.
Étape 1.3.1.1
Divisez la limite en utilisant la règle de la somme des limites sur la limite lorsque approche de .
Étape 1.3.1.2
Évaluez la limite de qui est constante lorsque approche de .
Étape 1.3.2
Comme la fonction approche de , la constante positive fois la fraction approche également de .
Étape 1.3.2.1
Étudiez la limite avec le multiple constant retiré.
Étape 1.3.2.2
Comme l’exposant approche de , la quantité approche de .
Étape 1.3.3
L’infini plus ou moins un nombre est l’infini.
Étape 1.3.4
L’infini divisé l’infini est indéfini.
Indéfini
Étape 1.4
L’infini divisé l’infini est indéfini.
Indéfini
Étape 2
Comme est de forme indéterminée, appliquez la règle de l’Hôpital. La règle de l’Hôpital indique que la limite d’un quotient de fonctions est égale à la limite du quotient de leurs dérivées.
Étape 3
Étape 3.1
Différenciez le numérateur et le dénominateur.
Étape 3.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 3.3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.4
Évaluez .
Étape 3.4.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.4.2
Différenciez en utilisant la règle exponentielle qui indique que est où =.
Étape 3.5
Soustrayez de .
Étape 3.6
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 3.7
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.8
Évaluez .
Étape 3.8.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.8.2
Différenciez en utilisant la règle exponentielle qui indique que est où =.
Étape 3.9
Additionnez et .
Étape 4
Étape 4.1
Annulez le facteur commun.
Étape 4.2
Réécrivez l’expression.
Étape 5
Évaluez la limite de qui est constante lorsque approche de .
Étape 6
Placez le signe moins devant la fraction.