Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Déterminez la dérivée première.
Étape 1.1.1
Différenciez en utilisant la règle du quotient qui indique que est où et .
Étape 1.1.2
Différenciez.
Étape 1.1.2.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.1.2.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.2.3
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.1.2.4
Multipliez par .
Étape 1.1.2.5
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.2.6
Additionnez et .
Étape 1.1.3
Élevez à la puissance .
Étape 1.1.4
Élevez à la puissance .
Étape 1.1.5
Utilisez la règle de puissance pour associer des exposants.
Étape 1.1.6
Additionnez et .
Étape 1.1.7
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.1.8
Multipliez par .
Étape 1.1.9
Simplifiez
Étape 1.1.9.1
Appliquez la propriété distributive.
Étape 1.1.9.2
Simplifiez le numérateur.
Étape 1.1.9.2.1
Simplifiez chaque terme.
Étape 1.1.9.2.1.1
Multipliez par .
Étape 1.1.9.2.1.2
Multipliez par .
Étape 1.1.9.2.2
Soustrayez de .
Étape 1.2
La dérivée première de par rapport à est .
Étape 2
Étape 2.1
Définissez la dérivée première égale à .
Étape 2.2
Définissez le numérateur égal à zéro.
Étape 2.3
Résolvez l’équation pour .
Étape 2.3.1
Soustrayez des deux côtés de l’équation.
Étape 2.3.2
Divisez chaque terme dans par et simplifiez.
Étape 2.3.2.1
Divisez chaque terme dans par .
Étape 2.3.2.2
Simplifiez le côté gauche.
Étape 2.3.2.2.1
Annulez le facteur commun de .
Étape 2.3.2.2.1.1
Annulez le facteur commun.
Étape 2.3.2.2.1.2
Divisez par .
Étape 2.3.2.3
Simplifiez le côté droit.
Étape 2.3.2.3.1
Placez le signe moins devant la fraction.
Étape 2.3.3
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 2.3.4
Simplifiez .
Étape 2.3.4.1
Réécrivez comme .
Étape 2.3.4.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 2.3.5
La solution complète est le résultat des parties positive et négative de la solution.
Étape 2.3.5.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 2.3.5.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 2.3.5.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 3
Étape 3.1
Définissez le dénominateur dans égal à pour déterminer où l’expression est indéfinie.
Étape 3.2
Résolvez .
Étape 3.2.1
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 3.2.2
Simplifiez .
Étape 3.2.2.1
Réécrivez comme .
Étape 3.2.2.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 3.2.2.3
Plus ou moins est .
Étape 4
Étape 4.1
Évaluez sur .
Étape 4.1.1
Remplacez par .
Étape 4.1.2
L’expression contient une division par . L’expression est indéfinie.
Indéfini
Indéfini
Indéfini
Étape 5
Le domaine du problème d’origine ne comprend aucune valeur de où la dérivée est ou indéfinie.
Aucun point critique n’a été trouvé