Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Déterminez la dérivée première.
Étape 1.1.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.1.2
Évaluez .
Étape 1.1.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.2.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.1.2.3
Associez et .
Étape 1.1.2.4
Associez et .
Étape 1.1.2.5
Annulez le facteur commun de .
Étape 1.1.2.5.1
Annulez le facteur commun.
Étape 1.1.2.5.2
Divisez par .
Étape 1.1.3
Évaluez .
Étape 1.1.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.3.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.1.3.3
Multipliez par .
Étape 1.1.4
Évaluez .
Étape 1.1.4.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.4.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.1.4.3
Multipliez par .
Étape 1.1.5
Différenciez en utilisant la règle de la constante.
Étape 1.1.5.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.5.2
Additionnez et .
Étape 1.2
La dérivée première de par rapport à est .
Étape 2
Étape 2.1
Définissez la dérivée première égale à .
Étape 2.2
Factorisez en utilisant la règle du carré parfait.
Étape 2.2.1
Réécrivez comme .
Étape 2.2.2
Vérifiez que le terme central est le double du produit des nombres élevés au carré dans le premier terme et le troisième terme.
Étape 2.2.3
Réécrivez le polynôme.
Étape 2.2.4
Factorisez en utilisant la règle trinomiale du carré parfait , où et .
Étape 2.3
Définissez le égal à .
Étape 2.4
Ajoutez aux deux côtés de l’équation.
Étape 3
Étape 3.1
Le domaine de l’expression est l’ensemble des nombres réels excepté là où l’expression est indéfinie. Dans ce cas, aucun nombre réel ne rend l’expression indéfinie.
Étape 4
Étape 4.1
Évaluez sur .
Étape 4.1.1
Remplacez par .
Étape 4.1.2
Simplifiez
Étape 4.1.2.1
Simplifiez chaque terme.
Étape 4.1.2.1.1
Élevez à la puissance .
Étape 4.1.2.1.2
Associez et .
Étape 4.1.2.1.3
Élevez à la puissance .
Étape 4.1.2.1.4
Multipliez par .
Étape 4.1.2.1.5
Multipliez par .
Étape 4.1.2.2
Déterminez le dénominateur commun.
Étape 4.1.2.2.1
Écrivez comme une fraction avec le dénominateur .
Étape 4.1.2.2.2
Multipliez par .
Étape 4.1.2.2.3
Multipliez par .
Étape 4.1.2.2.4
Écrivez comme une fraction avec le dénominateur .
Étape 4.1.2.2.5
Multipliez par .
Étape 4.1.2.2.6
Multipliez par .
Étape 4.1.2.2.7
Écrivez comme une fraction avec le dénominateur .
Étape 4.1.2.2.8
Multipliez par .
Étape 4.1.2.2.9
Multipliez par .
Étape 4.1.2.3
Associez les numérateurs sur le dénominateur commun.
Étape 4.1.2.4
Simplifiez chaque terme.
Étape 4.1.2.4.1
Multipliez par .
Étape 4.1.2.4.2
Multipliez par .
Étape 4.1.2.4.3
Multipliez par .
Étape 4.1.2.5
Simplifiez l’expression.
Étape 4.1.2.5.1
Soustrayez de .
Étape 4.1.2.5.2
Additionnez et .
Étape 4.1.2.5.3
Soustrayez de .
Étape 4.1.2.5.4
Placez le signe moins devant la fraction.
Étape 4.2
Indiquez tous les points.
Étape 5