Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Déterminez la dérivée première.
Étape 1.1.1
Différenciez en utilisant la règle d’enchaînement, qui indique que est où et .
Étape 1.1.1.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 1.1.1.2
Différenciez en utilisant la règle exponentielle qui indique que est où =.
Étape 1.1.1.3
Remplacez toutes les occurrences de par .
Étape 1.1.2
Différenciez.
Étape 1.1.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.2.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.1.2.3
Multipliez par .
Étape 1.1.3
Simplifiez
Étape 1.1.3.1
Réorganisez les facteurs de .
Étape 1.1.3.2
Remettez les facteurs dans l’ordre dans .
Étape 1.2
La dérivée première de par rapport à est .
Étape 2
Étape 2.1
Définissez la dérivée première égale à .
Étape 2.2
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 2.3
Définissez égal à .
Étape 2.4
Définissez égal à et résolvez .
Étape 2.4.1
Définissez égal à .
Étape 2.4.2
Résolvez pour .
Étape 2.4.2.1
Prenez le logarithme naturel des deux côtés de l’équation pour retirer la variable de l’exposant.
Étape 2.4.2.2
L’équation ne peut pas être résolue car est indéfini.
Indéfini
Étape 2.4.2.3
Il n’y a pas de solution pour
Aucune solution
Aucune solution
Aucune solution
Étape 2.5
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 3
Étape 3.1
Le domaine de l’expression est l’ensemble des nombres réels excepté là où l’expression est indéfinie. Dans ce cas, aucun nombre réel ne rend l’expression indéfinie.
Étape 4
Étape 4.1
Évaluez sur .
Étape 4.1.1
Remplacez par .
Étape 4.1.2
Simplifiez
Étape 4.1.2.1
L’élévation de à toute puissance positive produit .
Étape 4.1.2.2
Multipliez par .
Étape 4.1.2.3
Tout ce qui est élevé à la puissance est .
Étape 4.2
Indiquez tous les points.
Étape 5