Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Différenciez.
Étape 1.1.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.1.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.3
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.1.4
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.2
La dérivée de par rapport à est .
Étape 1.3
Simplifiez
Étape 1.3.1
Additionnez et .
Étape 1.3.2
Remettez les termes dans l’ordre.
Étape 2
Étape 2.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.2
Évaluez .
Étape 2.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.2.3
Multipliez par .
Étape 2.3
Évaluez .
Étape 2.3.1
Réécrivez comme .
Étape 2.3.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.4
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.5
Simplifiez
Étape 2.5.1
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 2.5.2
Additionnez et .
Étape 2.5.3
Remettez les termes dans l’ordre.
Étape 3
La dérivée seconde de par rapport à est .