Calcul infinitésimal Exemples

Encontre a Derivada de Third y=3cos(x)+(x+2)^4
Étape 1
Déterminez la dérivée première.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.2
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.2.2
La dérivée de par rapport à est .
Étape 1.2.3
Multipliez par .
Étape 1.3
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 1.3.1
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 1.3.1.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 1.3.1.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.3.1.3
Remplacez toutes les occurrences de par .
Étape 1.3.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.3.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.3.4
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.3.5
Additionnez et .
Étape 1.3.6
Multipliez par .
Étape 1.4
Remettez les termes dans l’ordre.
Étape 2
Déterminez la dérivée seconde.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.2
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2.2
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.2.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 2.2.2.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.2.2.3
Remplacez toutes les occurrences de par .
Étape 2.2.3
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.2.4
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.2.5
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2.6
Additionnez et .
Étape 2.2.7
Multipliez par .
Étape 2.2.8
Multipliez par .
Étape 2.3
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.3.2
La dérivée de par rapport à est .
Étape 3
Déterminez la dérivée troisième.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Réécrivez comme .
Étape 3.2
Développez à l’aide de la méthode FOIL.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Appliquez la propriété distributive.
Étape 3.2.2
Appliquez la propriété distributive.
Étape 3.2.3
Appliquez la propriété distributive.
Étape 3.3
Simplifiez et associez les termes similaires.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1.1
Multipliez par .
Étape 3.3.1.2
Déplacez à gauche de .
Étape 3.3.1.3
Multipliez par .
Étape 3.3.2
Additionnez et .
Étape 3.4
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 3.5
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 3.5.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.5.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 3.5.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 3.5.4
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.5.5
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 3.5.6
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.5.7
Multipliez par .
Étape 3.5.8
Additionnez et .
Étape 3.6
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 3.6.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.6.2
La dérivée de par rapport à est .
Étape 3.6.3
Multipliez par .
Étape 3.7
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 3.7.1
Appliquez la propriété distributive.
Étape 3.7.2
Associez des termes.
Appuyez ici pour voir plus d’étapes...
Étape 3.7.2.1
Multipliez par .
Étape 3.7.2.2
Multipliez par .