Entrer un problème...
Calcul infinitésimal Exemples
,
Étape 1
Étape 1.1
Déterminez la dérivée première.
Étape 1.1.1
Déterminez la dérivée première.
Étape 1.1.1.1
Différenciez en utilisant la règle d’enchaînement, qui indique que est où et .
Étape 1.1.1.1.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 1.1.1.1.2
La dérivée de par rapport à est .
Étape 1.1.1.1.3
Remplacez toutes les occurrences de par .
Étape 1.1.1.2
Différenciez.
Étape 1.1.1.2.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.1.1.2.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.1.1.2.3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.1.2.4
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.1.1.2.5
Multipliez par .
Étape 1.1.1.2.6
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.1.2.7
Additionnez et .
Étape 1.1.1.3
Simplifiez
Étape 1.1.1.3.1
Réorganisez les facteurs de .
Étape 1.1.1.3.2
Multipliez par .
Étape 1.1.2
La dérivée première de par rapport à est .
Étape 1.2
Définissez la dérivée première égale à puis résolvez l’équation .
Étape 1.2.1
Définissez la dérivée première égale à .
Étape 1.2.2
Définissez le numérateur égal à zéro.
Étape 1.2.3
Résolvez l’équation pour .
Étape 1.2.3.1
Soustrayez des deux côtés de l’équation.
Étape 1.2.3.2
Divisez chaque terme dans par et simplifiez.
Étape 1.2.3.2.1
Divisez chaque terme dans par .
Étape 1.2.3.2.2
Simplifiez le côté gauche.
Étape 1.2.3.2.2.1
Annulez le facteur commun de .
Étape 1.2.3.2.2.1.1
Annulez le facteur commun.
Étape 1.2.3.2.2.1.2
Divisez par .
Étape 1.2.3.2.3
Simplifiez le côté droit.
Étape 1.2.3.2.3.1
Placez le signe moins devant la fraction.
Étape 1.3
Déterminez les valeurs où la dérivée est indéfinie.
Étape 1.3.1
Le domaine de l’expression est l’ensemble des nombres réels excepté là où l’expression est indéfinie. Dans ce cas, aucun nombre réel ne rend l’expression indéfinie.
Étape 1.4
Évaluez sur chaque valeur où la dérivée est ou indéfinie.
Étape 1.4.1
Évaluez sur .
Étape 1.4.1.1
Remplacez par .
Étape 1.4.1.2
Simplifiez
Étape 1.4.1.2.1
Simplifiez chaque terme.
Étape 1.4.1.2.1.1
Utilisez la règle de puissance pour distribuer l’exposant.
Étape 1.4.1.2.1.1.1
Appliquez la règle de produit à .
Étape 1.4.1.2.1.1.2
Appliquez la règle de produit à .
Étape 1.4.1.2.1.2
Élevez à la puissance .
Étape 1.4.1.2.1.3
Multipliez par .
Étape 1.4.1.2.1.4
Élevez à la puissance .
Étape 1.4.1.2.1.5
Élevez à la puissance .
Étape 1.4.1.2.1.6
Multipliez .
Étape 1.4.1.2.1.6.1
Multipliez par .
Étape 1.4.1.2.1.6.2
Associez et .
Étape 1.4.1.2.1.6.3
Multipliez par .
Étape 1.4.1.2.1.7
Placez le signe moins devant la fraction.
Étape 1.4.1.2.2
Déterminez le dénominateur commun.
Étape 1.4.1.2.2.1
Multipliez par .
Étape 1.4.1.2.2.2
Multipliez par .
Étape 1.4.1.2.2.3
Écrivez comme une fraction avec le dénominateur .
Étape 1.4.1.2.2.4
Multipliez par .
Étape 1.4.1.2.2.5
Multipliez par .
Étape 1.4.1.2.2.6
Multipliez par .
Étape 1.4.1.2.3
Associez les numérateurs sur le dénominateur commun.
Étape 1.4.1.2.4
Simplifiez chaque terme.
Étape 1.4.1.2.4.1
Multipliez par .
Étape 1.4.1.2.4.2
Multipliez par .
Étape 1.4.1.2.5
Simplifiez en ajoutant et en soustrayant.
Étape 1.4.1.2.5.1
Soustrayez de .
Étape 1.4.1.2.5.2
Additionnez et .
Étape 1.4.2
Indiquez tous les points.
Étape 2
Étape 2.1
Évaluez sur .
Étape 2.1.1
Remplacez par .
Étape 2.1.2
Simplifiez
Étape 2.1.2.1
Simplifiez chaque terme.
Étape 2.1.2.1.1
Élevez à la puissance .
Étape 2.1.2.1.2
Multipliez par .
Étape 2.1.2.2
Simplifiez en ajoutant et en soustrayant.
Étape 2.1.2.2.1
Soustrayez de .
Étape 2.1.2.2.2
Additionnez et .
Étape 2.2
Évaluez sur .
Étape 2.2.1
Remplacez par .
Étape 2.2.2
Simplifiez
Étape 2.2.2.1
Simplifiez chaque terme.
Étape 2.2.2.1.1
Un à n’importe quelle puissance est égal à un.
Étape 2.2.2.1.2
Multipliez par .
Étape 2.2.2.2
Simplifiez en ajoutant des nombres.
Étape 2.2.2.2.1
Additionnez et .
Étape 2.2.2.2.2
Additionnez et .
Étape 2.3
Indiquez tous les points.
Étape 3
Comparez les valeurs trouvées pour chaque valeur de afin de déterminer le maximum et le minimum absolus sur l’intervalle donné. Le maximum intervient sur la valeur la plus haute et le minimum intervient sur la valeur la plus basse.
Maximum absolu :
Minimum absolu :
Étape 4