Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.2
Différenciez en utilisant la règle d’enchaînement, qui indique que est où et .
Étape 1.2.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 1.2.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.2.3
Remplacez toutes les occurrences de par .
Étape 1.3
Différenciez.
Étape 1.3.1
Multipliez par .
Étape 1.3.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.3.3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.3.4
Additionnez et .
Étape 1.3.5
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.3.6
Multipliez par .
Étape 1.3.7
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.3.8
Multipliez par .
Étape 2
Étape 2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2
Différenciez en utilisant la règle d’enchaînement, qui indique que est où et .
Étape 2.2.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 2.2.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.2.3
Remplacez toutes les occurrences de par .
Étape 2.3
Différenciez.
Étape 2.3.1
Multipliez par .
Étape 2.3.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.3.3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.3.4
Additionnez et .
Étape 2.3.5
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.3.6
Multipliez par .
Étape 2.3.7
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.3.8
Multipliez par .
Étape 3
La dérivée seconde de par rapport à est .