Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Différenciez en utilisant la règle d’enchaînement, qui indique que est où et .
Étape 1.1.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 1.1.2
La dérivée de par rapport à est .
Étape 1.1.3
Remplacez toutes les occurrences de par .
Étape 1.2
Différenciez.
Étape 1.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.2.2
Associez et .
Étape 1.2.3
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.2.4
Multipliez par .
Étape 2
Étape 2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2
Différenciez en utilisant la règle d’enchaînement, qui indique que est où et .
Étape 2.2.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 2.2.2
La dérivée de par rapport à est .
Étape 2.2.3
Remplacez toutes les occurrences de par .
Étape 2.3
Différenciez en utilisant la règle multiple constante.
Étape 2.3.1
Associez et .
Étape 2.3.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.3.3
Multipliez par .
Étape 2.4
Élevez à la puissance .
Étape 2.5
Élevez à la puissance .
Étape 2.6
Utilisez la règle de puissance pour associer des exposants.
Étape 2.7
Simplifiez l’expression.
Étape 2.7.1
Additionnez et .
Étape 2.7.2
Multipliez par .
Étape 2.8
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.9
Multipliez par .
Étape 3
La dérivée seconde de par rapport à est .