Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Utilisez pour réécrire comme .
Étape 1.2
Différenciez en utilisant la règle de produit qui indique que est où et .
Étape 1.3
Différenciez.
Étape 1.3.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.3.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.3.3
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.3.4
Multipliez par .
Étape 1.3.5
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.4
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 1.5
Associez et .
Étape 1.6
Associez les numérateurs sur le dénominateur commun.
Étape 1.7
Simplifiez le numérateur.
Étape 1.7.1
Multipliez par .
Étape 1.7.2
Soustrayez de .
Étape 1.8
Associez les fractions.
Étape 1.8.1
Placez le signe moins devant la fraction.
Étape 1.8.2
Associez et .
Étape 1.8.3
Placez sur le dénominateur en utilisant la règle de l’exposant négatif .
Étape 1.9
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.10
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.11
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.12
Multipliez par .
Étape 1.13
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.14
Simplifiez l’expression.
Étape 1.14.1
Additionnez et .
Étape 1.14.2
Déplacez à gauche de .
Étape 1.15
Simplifiez
Étape 1.15.1
Appliquez la propriété distributive.
Étape 1.15.2
Appliquez la propriété distributive.
Étape 1.15.3
Associez des termes.
Étape 1.15.3.1
Multipliez par .
Étape 1.15.3.2
Élevez à la puissance .
Étape 1.15.3.3
Élevez à la puissance .
Étape 1.15.3.4
Utilisez la règle de puissance pour associer des exposants.
Étape 1.15.3.5
Additionnez et .
Étape 1.15.3.6
Élevez à la puissance .
Étape 1.15.3.7
Utilisez la règle de puissance pour associer des exposants.
Étape 1.15.3.8
Écrivez comme une fraction avec un dénominateur commun.
Étape 1.15.3.9
Associez les numérateurs sur le dénominateur commun.
Étape 1.15.3.10
Additionnez et .
Étape 1.15.4
Remettez les termes dans l’ordre.
Étape 1.15.5
Simplifiez chaque terme.
Étape 1.15.5.1
Développez à l’aide de la méthode FOIL.
Étape 1.15.5.1.1
Appliquez la propriété distributive.
Étape 1.15.5.1.2
Appliquez la propriété distributive.
Étape 1.15.5.1.3
Appliquez la propriété distributive.
Étape 1.15.5.2
Simplifiez chaque terme.
Étape 1.15.5.2.1
Multipliez par .
Étape 1.15.5.2.2
Annulez le facteur commun de .
Étape 1.15.5.2.2.1
Factorisez à partir de .
Étape 1.15.5.2.2.2
Factorisez à partir de .
Étape 1.15.5.2.2.3
Annulez le facteur commun.
Étape 1.15.5.2.2.4
Réécrivez l’expression.
Étape 1.15.5.2.3
Associez et .
Étape 1.15.5.2.4
Associez et .
Étape 1.15.5.2.5
Déplacez à gauche de .
Étape 1.15.5.2.6
Multipliez par .
Étape 1.15.5.2.7
Associez et .
Étape 1.15.6
Additionnez et .
Étape 1.15.7
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 1.15.8
Associez et .
Étape 1.15.9
Associez les numérateurs sur le dénominateur commun.
Étape 1.15.10
Simplifiez le numérateur.
Étape 1.15.10.1
Factorisez à partir de .
Étape 1.15.10.1.1
Déplacez .
Étape 1.15.10.1.2
Factorisez à partir de .
Étape 1.15.10.1.3
Factorisez à partir de .
Étape 1.15.10.1.4
Factorisez à partir de .
Étape 1.15.10.2
Multipliez par .
Étape 1.15.10.3
Additionnez et .
Étape 1.15.10.4
Multipliez par .
Étape 2
Étape 2.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.2
Évaluez .
Étape 2.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.2.3
Multipliez par .
Étape 2.3
Évaluez .
Étape 2.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.3.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.3.3
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 2.3.4
Associez et .
Étape 2.3.5
Associez les numérateurs sur le dénominateur commun.
Étape 2.3.6
Simplifiez le numérateur.
Étape 2.3.6.1
Multipliez par .
Étape 2.3.6.2
Soustrayez de .
Étape 2.3.7
Associez et .
Étape 2.3.8
Multipliez par .
Étape 2.3.9
Multipliez par .
Étape 2.3.10
Multipliez par .
Étape 2.4
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.5
Évaluez .
Étape 2.5.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.5.2
Réécrivez comme .
Étape 2.5.3
Différenciez en utilisant la règle d’enchaînement, qui indique que est où et .
Étape 2.5.3.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 2.5.3.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.5.3.3
Remplacez toutes les occurrences de par .
Étape 2.5.4
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.5.5
Multipliez les exposants dans .
Étape 2.5.5.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 2.5.5.2
Annulez le facteur commun de .
Étape 2.5.5.2.1
Factorisez à partir de .
Étape 2.5.5.2.2
Annulez le facteur commun.
Étape 2.5.5.2.3
Réécrivez l’expression.
Étape 2.5.6
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 2.5.7
Associez et .
Étape 2.5.8
Associez les numérateurs sur le dénominateur commun.
Étape 2.5.9
Simplifiez le numérateur.
Étape 2.5.9.1
Multipliez par .
Étape 2.5.9.2
Soustrayez de .
Étape 2.5.10
Placez le signe moins devant la fraction.
Étape 2.5.11
Associez et .
Étape 2.5.12
Associez et .
Étape 2.5.13
Multipliez par en additionnant les exposants.
Étape 2.5.13.1
Utilisez la règle de puissance pour associer des exposants.
Étape 2.5.13.2
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 2.5.13.3
Associez et .
Étape 2.5.13.4
Associez les numérateurs sur le dénominateur commun.
Étape 2.5.13.5
Simplifiez le numérateur.
Étape 2.5.13.5.1
Multipliez par .
Étape 2.5.13.5.2
Soustrayez de .
Étape 2.5.13.6
Placez le signe moins devant la fraction.
Étape 2.5.14
Placez sur le dénominateur en utilisant la règle de l’exposant négatif .
Étape 2.5.15
Multipliez par .
Étape 2.5.16
Multipliez par .
Étape 2.6
Additionnez et .
Étape 3
Étape 3.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 3.2
Évaluez .
Étape 3.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.2.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 3.2.3
Multipliez par .
Étape 3.3
Évaluez .
Étape 3.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.3.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 3.3.3
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 3.3.4
Associez et .
Étape 3.3.5
Associez les numérateurs sur le dénominateur commun.
Étape 3.3.6
Simplifiez le numérateur.
Étape 3.3.6.1
Multipliez par .
Étape 3.3.6.2
Soustrayez de .
Étape 3.3.7
Placez le signe moins devant la fraction.
Étape 3.3.8
Associez et .
Étape 3.3.9
Multipliez par .
Étape 3.3.10
Multipliez par .
Étape 3.3.11
Placez sur le dénominateur en utilisant la règle de l’exposant négatif .
Étape 3.4
Évaluez .
Étape 3.4.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.4.2
Réécrivez comme .
Étape 3.4.3
Différenciez en utilisant la règle d’enchaînement, qui indique que est où et .
Étape 3.4.3.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 3.4.3.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 3.4.3.3
Remplacez toutes les occurrences de par .
Étape 3.4.4
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 3.4.5
Multipliez les exposants dans .
Étape 3.4.5.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 3.4.5.2
Annulez le facteur commun de .
Étape 3.4.5.2.1
Factorisez à partir de .
Étape 3.4.5.2.2
Annulez le facteur commun.
Étape 3.4.5.2.3
Réécrivez l’expression.
Étape 3.4.5.3
Multipliez par .
Étape 3.4.6
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 3.4.7
Associez et .
Étape 3.4.8
Associez les numérateurs sur le dénominateur commun.
Étape 3.4.9
Simplifiez le numérateur.
Étape 3.4.9.1
Multipliez par .
Étape 3.4.9.2
Soustrayez de .
Étape 3.4.10
Associez et .
Étape 3.4.11
Associez et .
Étape 3.4.12
Multipliez par en additionnant les exposants.
Étape 3.4.12.1
Déplacez .
Étape 3.4.12.2
Utilisez la règle de puissance pour associer des exposants.
Étape 3.4.12.3
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 3.4.12.4
Associez et .
Étape 3.4.12.5
Associez les numérateurs sur le dénominateur commun.
Étape 3.4.12.6
Simplifiez le numérateur.
Étape 3.4.12.6.1
Multipliez par .
Étape 3.4.12.6.2
Additionnez et .
Étape 3.4.12.7
Placez le signe moins devant la fraction.
Étape 3.4.13
Placez sur le dénominateur en utilisant la règle de l’exposant négatif .
Étape 3.4.14
Multipliez par .
Étape 3.4.15
Multipliez par .
Étape 3.4.16
Multipliez par .
Étape 3.4.17
Multipliez par .
Étape 3.4.18
Multipliez par .
Étape 4
Étape 4.1
Différenciez.
Étape 4.1.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 4.1.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 4.2
Évaluez .
Étape 4.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 4.2.2
Réécrivez comme .
Étape 4.2.3
Différenciez en utilisant la règle d’enchaînement, qui indique que est où et .
Étape 4.2.3.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 4.2.3.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 4.2.3.3
Remplacez toutes les occurrences de par .
Étape 4.2.4
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 4.2.5
Multipliez les exposants dans .
Étape 4.2.5.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 4.2.5.2
Annulez le facteur commun de .
Étape 4.2.5.2.1
Factorisez à partir de .
Étape 4.2.5.2.2
Annulez le facteur commun.
Étape 4.2.5.2.3
Réécrivez l’expression.
Étape 4.2.6
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 4.2.7
Associez et .
Étape 4.2.8
Associez les numérateurs sur le dénominateur commun.
Étape 4.2.9
Simplifiez le numérateur.
Étape 4.2.9.1
Multipliez par .
Étape 4.2.9.2
Soustrayez de .
Étape 4.2.10
Placez le signe moins devant la fraction.
Étape 4.2.11
Associez et .
Étape 4.2.12
Associez et .
Étape 4.2.13
Multipliez par en additionnant les exposants.
Étape 4.2.13.1
Utilisez la règle de puissance pour associer des exposants.
Étape 4.2.13.2
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 4.2.13.3
Associez et .
Étape 4.2.13.4
Associez les numérateurs sur le dénominateur commun.
Étape 4.2.13.5
Simplifiez le numérateur.
Étape 4.2.13.5.1
Multipliez par .
Étape 4.2.13.5.2
Soustrayez de .
Étape 4.2.13.6
Placez le signe moins devant la fraction.
Étape 4.2.14
Placez sur le dénominateur en utilisant la règle de l’exposant négatif .
Étape 4.2.15
Multipliez par .
Étape 4.2.16
Multipliez par .
Étape 4.3
Évaluez .
Étape 4.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 4.3.2
Réécrivez comme .
Étape 4.3.3
Différenciez en utilisant la règle d’enchaînement, qui indique que est où et .
Étape 4.3.3.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 4.3.3.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 4.3.3.3
Remplacez toutes les occurrences de par .
Étape 4.3.4
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 4.3.5
Multipliez les exposants dans .
Étape 4.3.5.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 4.3.5.2
Annulez le facteur commun de .
Étape 4.3.5.2.1
Factorisez à partir de .
Étape 4.3.5.2.2
Annulez le facteur commun.
Étape 4.3.5.2.3
Réécrivez l’expression.
Étape 4.3.5.3
Multipliez par .
Étape 4.3.6
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 4.3.7
Associez et .
Étape 4.3.8
Associez les numérateurs sur le dénominateur commun.
Étape 4.3.9
Simplifiez le numérateur.
Étape 4.3.9.1
Multipliez par .
Étape 4.3.9.2
Soustrayez de .
Étape 4.3.10
Associez et .
Étape 4.3.11
Associez et .
Étape 4.3.12
Multipliez par en additionnant les exposants.
Étape 4.3.12.1
Déplacez .
Étape 4.3.12.2
Utilisez la règle de puissance pour associer des exposants.
Étape 4.3.12.3
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 4.3.12.4
Associez et .
Étape 4.3.12.5
Associez les numérateurs sur le dénominateur commun.
Étape 4.3.12.6
Simplifiez le numérateur.
Étape 4.3.12.6.1
Multipliez par .
Étape 4.3.12.6.2
Additionnez et .
Étape 4.3.12.7
Placez le signe moins devant la fraction.
Étape 4.3.13
Placez sur le dénominateur en utilisant la règle de l’exposant négatif .
Étape 4.3.14
Multipliez par .
Étape 4.3.15
Multipliez par .
Étape 4.3.16
Multipliez par .
Étape 4.4
Soustrayez de .
Étape 5
La dérivée quatrième de par rapport à est .