Calcul infinitésimal Exemples

Trouver la valeur moyenne de la fonction g(t)=t/( racine carrée de 5+t^2) , [2,5]
,
Étape 1
Pour déterminer la valeur moyenne d’une fonction, cette fonction devrait être continue sur l’intervalle fermé . Pour déterminer si est continu sur ou non, déterminez le domaine de .
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Définissez le radicande dans supérieur ou égal à pour déterminer où l’expression est définie.
Étape 1.2
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1
Soustrayez des deux côtés de l’inégalité.
Étape 1.2.2
Comme le côté gauche a une puissance paire, il est toujours positif pour tous les nombres réels.
Tous les nombres réels
Tous les nombres réels
Étape 1.3
Définissez le dénominateur dans égal à pour déterminer où l’expression est indéfinie.
Étape 1.4
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 1.4.1
Pour retirer le radical du côté gauche de l’équation, élevez au carré les deux côtés de l’équation.
Étape 1.4.2
Simplifiez chaque côté de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 1.4.2.1
Utilisez pour réécrire comme .
Étape 1.4.2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 1.4.2.2.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 1.4.2.2.1.1
Multipliez les exposants dans .
Appuyez ici pour voir plus d’étapes...
Étape 1.4.2.2.1.1.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 1.4.2.2.1.1.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.4.2.2.1.1.2.1
Annulez le facteur commun.
Étape 1.4.2.2.1.1.2.2
Réécrivez l’expression.
Étape 1.4.2.2.1.2
Simplifiez
Étape 1.4.2.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 1.4.2.3.1
L’élévation de à toute puissance positive produit .
Étape 1.4.3
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 1.4.3.1
Soustrayez des deux côtés de l’équation.
Étape 1.4.3.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Étape 1.4.3.3
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 1.4.3.3.1
Réécrivez comme .
Étape 1.4.3.3.2
Réécrivez comme .
Étape 1.4.3.3.3
Réécrivez comme .
Étape 1.4.3.4
La solution complète est le résultat des parties positive et négative de la solution.
Appuyez ici pour voir plus d’étapes...
Étape 1.4.3.4.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 1.4.3.4.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 1.4.3.4.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 1.5
Le domaine est l’ensemble des nombres réels.
Notation d’intervalle :
Notation de constructeur d’ensemble :
Notation d’intervalle :
Notation de constructeur d’ensemble :
Étape 2
est continu sur .
est continu
Étape 3
La valeur moyenne de la fonction sur l’intervalle est définie comme .
Étape 4
Remplacez les valeurs réelles dans la formule pour la valeur moyenne d’une fonction.
Étape 5
Laissez . Alors , donc . Réécrivez avec et .
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Laissez . Déterminez .
Appuyez ici pour voir plus d’étapes...
Étape 5.1.1
Différenciez .
Étape 5.1.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 5.1.3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 5.1.4
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 5.1.5
Additionnez et .
Étape 5.2
Remplacez la limite inférieure pour dans .
Étape 5.3
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 5.3.1
Élevez à la puissance .
Étape 5.3.2
Additionnez et .
Étape 5.4
Remplacez la limite supérieure pour dans .
Étape 5.5
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 5.5.1
Élevez à la puissance .
Étape 5.5.2
Additionnez et .
Étape 5.6
Les valeurs déterminées pour et seront utilisées pour évaluer l’intégrale définie.
Étape 5.7
Réécrivez le problème en utilisant , et les nouvelles limites d’intégration.
Étape 6
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Multipliez par .
Étape 6.2
Déplacez à gauche de .
Étape 7
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 8
Appliquez les règles de base des exposants.
Appuyez ici pour voir plus d’étapes...
Étape 8.1
Utilisez pour réécrire comme .
Étape 8.2
Retirez du dénominateur en l’élevant à la puissance .
Étape 8.3
Multipliez les exposants dans .
Appuyez ici pour voir plus d’étapes...
Étape 8.3.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 8.3.2
Associez et .
Étape 8.3.3
Placez le signe moins devant la fraction.
Étape 9
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 10
Remplacez et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 10.1
Évaluez sur et sur .
Étape 10.2
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 10.2.1
Réécrivez comme .
Étape 10.2.2
Appliquez la règle de puissance et multipliez les exposants, .
Étape 10.2.3
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 10.2.3.1
Annulez le facteur commun.
Étape 10.2.3.2
Réécrivez l’expression.
Étape 10.2.4
Évaluez l’exposant.
Étape 10.2.5
Multipliez par .
Étape 11
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 11.1
Appliquez la propriété distributive.
Étape 11.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 11.2.1
Factorisez à partir de .
Étape 11.2.2
Annulez le facteur commun.
Étape 11.2.3
Réécrivez l’expression.
Étape 11.3
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 11.3.1
Factorisez à partir de .
Étape 11.3.2
Annulez le facteur commun.
Étape 11.3.3
Réécrivez l’expression.
Étape 12
Soustrayez de .
Étape 13
Appliquez la propriété distributive.
Étape 14
Associez et .
Étape 15
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 15.1
Factorisez à partir de .
Étape 15.2
Annulez le facteur commun.
Étape 15.3
Réécrivez l’expression.
Étape 16