Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Écrivez comme une fonction.
Étape 2
La fonction peut être trouvée en déterminant l’intégrale infinie de la dérivée .
Étape 3
Définissez l’intégrale à résoudre.
Étape 4
Étape 4.1
Laissez . Déterminez .
Étape 4.1.1
Différenciez .
Étape 4.1.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 4.1.3
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 4.1.4
Multipliez par .
Étape 4.2
Réécrivez le problème en utilisant et .
Étape 5
Associez et .
Étape 6
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 7
Utilisez la formule de l’angle moitié pour réécrire en .
Étape 8
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 9
Étape 9.1
Multipliez par .
Étape 9.2
Multipliez par .
Étape 10
Séparez l’intégrale unique en plusieurs intégrales.
Étape 11
Appliquez la règle de la constante.
Étape 12
Étape 12.1
Laissez . Déterminez .
Étape 12.1.1
Différenciez .
Étape 12.1.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 12.1.3
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 12.1.4
Multipliez par .
Étape 12.2
Réécrivez le problème en utilisant et .
Étape 13
Associez et .
Étape 14
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 15
L’intégrale de par rapport à est .
Étape 16
Simplifiez
Étape 17
Étape 17.1
Remplacez toutes les occurrences de par .
Étape 17.2
Remplacez toutes les occurrences de par .
Étape 17.3
Remplacez toutes les occurrences de par .
Étape 18
Étape 18.1
Simplifiez chaque terme.
Étape 18.1.1
Multipliez par .
Étape 18.1.2
Associez et .
Étape 18.2
Appliquez la propriété distributive.
Étape 18.3
Annulez le facteur commun de .
Étape 18.3.1
Factorisez à partir de .
Étape 18.3.2
Factorisez à partir de .
Étape 18.3.3
Annulez le facteur commun.
Étape 18.3.4
Réécrivez l’expression.
Étape 18.4
Associez et .
Étape 18.5
Multipliez .
Étape 18.5.1
Multipliez par .
Étape 18.5.2
Multipliez par .
Étape 19
Remettez les termes dans l’ordre.
Étape 20
La réponse est la dérivée première de la fonction .