Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Écrivez comme une équation.
Étape 2
Interchangez les variables.
Étape 3
Étape 3.1
Réécrivez l’équation comme .
Étape 3.2
Ajoutez aux deux côtés de l’équation.
Étape 3.3
Prenez le logarithme naturel des deux côtés de l’équation pour retirer la variable de l’exposant.
Étape 3.4
Développez le côté gauche.
Étape 3.4.1
Développez en déplaçant hors du logarithme.
Étape 3.4.2
Le logarithme naturel de est .
Étape 3.4.3
Multipliez par .
Étape 3.5
Divisez chaque terme dans par et simplifiez.
Étape 3.5.1
Divisez chaque terme dans par .
Étape 3.5.2
Simplifiez le côté gauche.
Étape 3.5.2.1
Annulez le facteur commun de .
Étape 3.5.2.1.1
Annulez le facteur commun.
Étape 3.5.2.1.2
Divisez par .
Étape 4
Replace with to show the final answer.
Étape 5
Étape 5.1
Pour vérifier l’inverse, vérifiez si et .
Étape 5.2
Évaluez .
Étape 5.2.1
Définissez la fonction de résultat composé.
Étape 5.2.2
Évaluez en remplaçant la valeur de par .
Étape 5.2.3
Simplifiez en déplaçant dans le logarithme.
Étape 5.2.4
Associez les termes opposés dans .
Étape 5.2.4.1
Additionnez et .
Étape 5.2.4.2
Additionnez et .
Étape 5.2.5
Multipliez les exposants dans .
Étape 5.2.5.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 5.2.5.2
Annulez le facteur commun de .
Étape 5.2.5.2.1
Factorisez à partir de .
Étape 5.2.5.2.2
Annulez le facteur commun.
Étape 5.2.5.2.3
Réécrivez l’expression.
Étape 5.2.6
Utilisez les règles des logarithmes pour retirer de l’exposant.
Étape 5.2.7
Le logarithme naturel de est .
Étape 5.2.8
Multipliez par .
Étape 5.3
Évaluez .
Étape 5.3.1
Définissez la fonction de résultat composé.
Étape 5.3.2
Évaluez en remplaçant la valeur de par .
Étape 5.3.3
Simplifiez chaque terme.
Étape 5.3.3.1
Annulez le facteur commun de .
Étape 5.3.3.1.1
Annulez le facteur commun.
Étape 5.3.3.1.2
Réécrivez l’expression.
Étape 5.3.3.2
L’élévation à une puissance et log sont des fonctions inverses.
Étape 5.3.4
Associez les termes opposés dans .
Étape 5.3.4.1
Soustrayez de .
Étape 5.3.4.2
Additionnez et .
Étape 5.4
Comme et , est l’inverse de .