Calcul infinitésimal Exemples

Trouver les minimums et maximums locaux (x+1)^7-7x-3
Étape 1
Écrivez comme une fonction.
Étape 2
Déterminez la dérivée première de la fonction.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.2
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 2.2.1.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.2.1.3
Remplacez toutes les occurrences de par .
Étape 2.2.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.2.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.2.4
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2.5
Additionnez et .
Étape 2.2.6
Multipliez par .
Étape 2.3
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.3.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.3.3
Multipliez par .
Étape 2.4
Différenciez en utilisant la règle de la constante.
Appuyez ici pour voir plus d’étapes...
Étape 2.4.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.4.2
Additionnez et .
Étape 3
Déterminez la dérivée seconde de la fonction.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 3.2
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.2.2
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.2.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 3.2.2.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 3.2.2.3
Remplacez toutes les occurrences de par .
Étape 3.2.3
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 3.2.4
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 3.2.5
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.2.6
Additionnez et .
Étape 3.2.7
Multipliez par .
Étape 3.2.8
Multipliez par .
Étape 3.3
Différenciez en utilisant la règle de la constante.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.3.2
Additionnez et .
Étape 4
Pour déterminer les valeurs maximales et minimales locales de la fonction, définissez la dérivée égale à et résolvez.
Étape 5
Déterminez la dérivée première.
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Déterminez la dérivée première.
Appuyez ici pour voir plus d’étapes...
Étape 5.1.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 5.1.2
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 5.1.2.1
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 5.1.2.1.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 5.1.2.1.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 5.1.2.1.3
Remplacez toutes les occurrences de par .
Étape 5.1.2.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 5.1.2.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 5.1.2.4
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 5.1.2.5
Additionnez et .
Étape 5.1.2.6
Multipliez par .
Étape 5.1.3
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 5.1.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 5.1.3.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 5.1.3.3
Multipliez par .
Étape 5.1.4
Différenciez en utilisant la règle de la constante.
Appuyez ici pour voir plus d’étapes...
Étape 5.1.4.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 5.1.4.2
Additionnez et .
Étape 5.2
La dérivée première de par rapport à est .
Étape 6
Définissez la dérivée première égale à puis résolvez l’équation .
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Définissez la dérivée première égale à .
Étape 6.2
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 6.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 6.2.1.1
Utilisez le théorème du binôme.
Étape 6.2.1.2
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 6.2.1.2.1
Multipliez par .
Étape 6.2.1.2.2
Un à n’importe quelle puissance est égal à un.
Étape 6.2.1.2.3
Multipliez par .
Étape 6.2.1.2.4
Un à n’importe quelle puissance est égal à un.
Étape 6.2.1.2.5
Multipliez par .
Étape 6.2.1.2.6
Un à n’importe quelle puissance est égal à un.
Étape 6.2.1.2.7
Multipliez par .
Étape 6.2.1.2.8
Un à n’importe quelle puissance est égal à un.
Étape 6.2.1.2.9
Multipliez par .
Étape 6.2.1.2.10
Un à n’importe quelle puissance est égal à un.
Étape 6.2.1.3
Appliquez la propriété distributive.
Étape 6.2.1.4
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 6.2.1.4.1
Multipliez par .
Étape 6.2.1.4.2
Multipliez par .
Étape 6.2.1.4.3
Multipliez par .
Étape 6.2.1.4.4
Multipliez par .
Étape 6.2.1.4.5
Multipliez par .
Étape 6.2.1.4.6
Multipliez par .
Étape 6.2.2
Associez les termes opposés dans .
Appuyez ici pour voir plus d’étapes...
Étape 6.2.2.1
Soustrayez de .
Étape 6.2.2.2
Additionnez et .
Étape 6.3
Représentez chaque côté de l’équation. La solution est la valeur x du point d’intersection.
Étape 7
Déterminez les valeurs où la dérivée est indéfinie.
Appuyez ici pour voir plus d’étapes...
Étape 7.1
Le domaine de l’expression est l’ensemble des nombres réels excepté là où l’expression est indéfinie. Dans ce cas, aucun nombre réel ne rend l’expression indéfinie.
Étape 8
Points critiques à évaluer.
Étape 9
Évaluez la dérivée seconde sur . Si la dérivée seconde est positive, il s’agit d’un minimum local. Si elle est négative, il s’agit d’un maximum local.
Étape 10
Évaluez la dérivée seconde.
Appuyez ici pour voir plus d’étapes...
Étape 10.1
Additionnez et .
Étape 10.2
Élevez à la puissance .
Étape 10.3
Multipliez par .
Étape 11
est un maximum local car la valeur de la dérivée seconde est négative. On parle de test de la dérivée seconde.
est un maximum local
Étape 12
Déterminez la valeur y quand .
Appuyez ici pour voir plus d’étapes...
Étape 12.1
Remplacez la variable par dans l’expression.
Étape 12.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 12.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 12.2.1.1
Additionnez et .
Étape 12.2.1.2
Élevez à la puissance .
Étape 12.2.1.3
Multipliez par .
Étape 12.2.2
Simplifiez en ajoutant et en soustrayant.
Appuyez ici pour voir plus d’étapes...
Étape 12.2.2.1
Additionnez et .
Étape 12.2.2.2
Soustrayez de .
Étape 12.2.3
La réponse finale est .
Étape 13
Évaluez la dérivée seconde sur . Si la dérivée seconde est positive, il s’agit d’un minimum local. Si elle est négative, il s’agit d’un maximum local.
Étape 14
Évaluez la dérivée seconde.
Appuyez ici pour voir plus d’étapes...
Étape 14.1
Additionnez et .
Étape 14.2
Un à n’importe quelle puissance est égal à un.
Étape 14.3
Multipliez par .
Étape 15
est un minimum local car la valeur de la dérivée seconde est positive. On parle de test de la dérivée seconde.
est un minimum local
Étape 16
Déterminez la valeur y quand .
Appuyez ici pour voir plus d’étapes...
Étape 16.1
Remplacez la variable par dans l’expression.
Étape 16.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 16.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 16.2.1.1
Additionnez et .
Étape 16.2.1.2
Un à n’importe quelle puissance est égal à un.
Étape 16.2.1.3
Multipliez par .
Étape 16.2.2
Simplifiez en ajoutant et en soustrayant.
Appuyez ici pour voir plus d’étapes...
Étape 16.2.2.1
Additionnez et .
Étape 16.2.2.2
Soustrayez de .
Étape 16.2.3
La réponse finale est .
Étape 17
Ce sont les extrema locaux pour .
est un maximum local
est un minimum local
Étape 18