Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Prenez la limite du numérateur et la limite du dénominateur.
Étape 1.2
Évaluez la limite du numérateur.
Étape 1.2.1
Évaluez la limite.
Étape 1.2.1.1
Divisez la limite en utilisant la règle de la somme des limites sur la limite lorsque approche de .
Étape 1.2.1.2
Placez la limite dans l’exposant.
Étape 1.2.1.3
Placez le terme hors de la limite car il constant par rapport à .
Étape 1.2.1.4
Évaluez la limite de qui est constante lorsque approche de .
Étape 1.2.2
Évaluez la limite de en insérant pour .
Étape 1.2.3
Simplifiez la réponse.
Étape 1.2.3.1
Simplifiez chaque terme.
Étape 1.2.3.1.1
Multipliez par .
Étape 1.2.3.1.2
Tout ce qui est élevé à la puissance est .
Étape 1.2.3.1.3
Multipliez par .
Étape 1.2.3.2
Soustrayez de .
Étape 1.3
Évaluez la limite du dénominateur.
Étape 1.3.1
Déplacez la limite dans la fonction trigonométrique car la tangente est continue.
Étape 1.3.2
Évaluez la limite de en insérant pour .
Étape 1.3.3
La valeur exacte de est .
Étape 1.3.4
L’expression contient une division par . L’expression est indéfinie.
Indéfini
Étape 1.4
L’expression contient une division par . L’expression est indéfinie.
Indéfini
Étape 2
Comme est de forme indéterminée, appliquez la règle de l’Hôpital. La règle de l’Hôpital indique que la limite d’un quotient de fonctions est égale à la limite du quotient de leurs dérivées.
Étape 3
Étape 3.1
Différenciez le numérateur et le dénominateur.
Étape 3.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 3.3
Évaluez .
Étape 3.3.1
Différenciez en utilisant la règle d’enchaînement, qui indique que est où et .
Étape 3.3.1.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 3.3.1.2
Différenciez en utilisant la règle exponentielle qui indique que est où =.
Étape 3.3.1.3
Remplacez toutes les occurrences de par .
Étape 3.3.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.3.3
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 3.3.4
Multipliez par .
Étape 3.3.5
Déplacez à gauche de .
Étape 3.4
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.5
Additionnez et .
Étape 3.6
La dérivée de par rapport à est .
Étape 4
Placez le terme hors de la limite car il constant par rapport à .
Étape 5
Divisez la limite en utilisant la règle du quotient des limites sur la limite lorsque approche de .
Étape 6
Placez la limite dans l’exposant.
Étape 7
Placez le terme hors de la limite car il constant par rapport à .
Étape 8
Déplacez l’exposant de hors de la limite en utilisant la règle des puissances limites.
Étape 9
Déplacez la limite dans la fonction trigonométrique car la sécante est continue.
Étape 10
Étape 10.1
Évaluez la limite de en insérant pour .
Étape 10.2
Évaluez la limite de en insérant pour .
Étape 11
Étape 11.1
Simplifiez le numérateur.
Étape 11.1.1
Multipliez par .
Étape 11.1.2
Tout ce qui est élevé à la puissance est .
Étape 11.2
Simplifiez le dénominateur.
Étape 11.2.1
La valeur exacte de est .
Étape 11.2.2
Un à n’importe quelle puissance est égal à un.
Étape 11.3
Annulez le facteur commun de .
Étape 11.3.1
Annulez le facteur commun.
Étape 11.3.2
Réécrivez l’expression.
Étape 11.4
Multipliez par .