Calcul infinitésimal Exemples

Trouver les points critiques f(x)=( logarithme népérien de x)/x
Étape 1
Déterminez la dérivée première.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Déterminez la dérivée première.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1
Différenciez en utilisant la règle du quotient qui indique que est et .
Étape 1.1.2
La dérivée de par rapport à est .
Étape 1.1.3
Différenciez en utilisant la règle de puissance.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.3.1
Associez et .
Étape 1.1.3.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.3.2.1
Annulez le facteur commun.
Étape 1.1.3.2.2
Réécrivez l’expression.
Étape 1.1.3.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.1.3.4
Multipliez par .
Étape 1.2
La dérivée première de par rapport à est .
Étape 2
Définissez la dérivée première égale à puis résolvez l’équation .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Définissez la dérivée première égale à .
Étape 2.2
Définissez le numérateur égal à zéro.
Étape 2.3
Résolvez l’équation pour .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Soustrayez des deux côtés de l’équation.
Étape 2.3.2
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.2.1
Divisez chaque terme dans par .
Étape 2.3.2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.2.2.1
La division de deux valeurs négatives produit une valeur positive.
Étape 2.3.2.2.2
Divisez par .
Étape 2.3.2.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.2.3.1
Divisez par .
Étape 2.3.3
Pour résoudre , réécrivez l’équation en utilisant les propriétés des logarithmes.
Étape 2.3.4
Réécrivez en forme exponentielle en utilisant la définition d’un logarithme. Si et sont des nombres réels positifs et , alors est équivalent à .
Étape 2.3.5
Réécrivez l’équation comme .
Étape 3
Déterminez les valeurs où la dérivée est indéfinie.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Définissez le dénominateur dans égal à pour déterminer où l’expression est indéfinie.
Étape 3.2
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 3.2.2
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.2.1
Réécrivez comme .
Étape 3.2.2.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 3.2.2.3
Plus ou moins est .
Étape 3.3
Définissez l’argument dans inférieur ou égal à pour déterminer où l’expression est indéfinie.
Étape 3.4
L’équation est indéfinie là où le dénominateur est égal à , l’argument d’une racine carrée est inférieur à ou l’argument d’un logarithme est inférieur ou égal à .
Étape 4
Évaluez sur chaque valeur où la dérivée est ou indéfinie.
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Évaluez sur .
Appuyez ici pour voir plus d’étapes...
Étape 4.1.1
Remplacez par .
Étape 4.1.2
Le logarithme naturel de est .
Étape 4.2
Évaluez sur .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1
Remplacez par .
Étape 4.2.2
L’expression contient une division par . L’expression est indéfinie.
Indéfini
Indéfini
Étape 4.3
Indiquez tous les points.
Étape 5