Calcul infinitésimal Exemples

Trouver les points critiques f(x)=|3x-4|
Étape 1
Déterminez la dérivée première.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Déterminez la dérivée première.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 1.1.1.2
La dérivée de par rapport à est .
Étape 1.1.1.3
Remplacez toutes les occurrences de par .
Étape 1.1.2
Différenciez.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.2.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.1.2.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.2.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.1.2.4
Multipliez par .
Étape 1.1.2.5
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.2.6
Associez les fractions.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.2.6.1
Additionnez et .
Étape 1.1.2.6.2
Associez et .
Étape 1.1.2.6.3
Déplacez à gauche de .
Étape 1.1.3
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 1.1.3.1
Appliquez la propriété distributive.
Étape 1.1.3.2
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.3.2.1
Multipliez par .
Étape 1.1.3.2.2
Multipliez par .
Étape 1.1.3.3
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.3.3.1
Factorisez à partir de .
Étape 1.1.3.3.2
Factorisez à partir de .
Étape 1.1.3.3.3
Factorisez à partir de .
Étape 1.2
La dérivée première de par rapport à est .
Étape 2
Définissez la dérivée première égale à puis résolvez l’équation .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Définissez la dérivée première égale à .
Étape 2.2
Définissez le numérateur égal à zéro.
Étape 2.3
Résolvez l’équation pour .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1.1
Divisez chaque terme dans par .
Étape 2.3.1.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1.2.1.1
Annulez le facteur commun.
Étape 2.3.1.2.1.2
Divisez par .
Étape 2.3.1.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1.3.1
Divisez par .
Étape 2.3.2
Ajoutez aux deux côtés de l’équation.
Étape 2.3.3
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.3.1
Divisez chaque terme dans par .
Étape 2.3.3.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.3.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.3.2.1.1
Annulez le facteur commun.
Étape 2.3.3.2.1.2
Divisez par .
Étape 3
Déterminez les valeurs où la dérivée est indéfinie.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Définissez le dénominateur dans égal à pour déterminer où l’expression est indéfinie.
Étape 3.2
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Supprimez le terme en valeur absolue. Cela crée un du côté droit de l’équation car .
Étape 3.2.2
Plus ou moins est .
Étape 3.2.3
Ajoutez aux deux côtés de l’équation.
Étape 3.2.4
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.4.1
Divisez chaque terme dans par .
Étape 3.2.4.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.4.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.4.2.1.1
Annulez le facteur commun.
Étape 3.2.4.2.1.2
Divisez par .
Étape 4
Évaluez sur chaque valeur où la dérivée est ou indéfinie.
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Évaluez sur .
Appuyez ici pour voir plus d’étapes...
Étape 4.1.1
Remplacez par .
Étape 4.1.2
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 4.1.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 4.1.2.1.1
Annulez le facteur commun.
Étape 4.1.2.1.2
Réécrivez l’expression.
Étape 4.1.2.2
Soustrayez de .
Étape 4.1.2.3
La valeur absolue est la distance entre un nombre et zéro. La distance entre et est .
Étape 4.2
Indiquez tous les points.
Étape 5