Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Déterminez la dérivée première.
Étape 1.1.1
Différenciez en utilisant la règle de produit qui indique que est où et .
Étape 1.1.2
La dérivée de par rapport à est .
Étape 1.1.3
Différenciez en utilisant la règle de puissance.
Étape 1.1.3.1
Associez et .
Étape 1.1.3.2
Annulez le facteur commun de .
Étape 1.1.3.2.1
Annulez le facteur commun.
Étape 1.1.3.2.2
Réécrivez l’expression.
Étape 1.1.3.3
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.1.3.4
Multipliez par .
Étape 1.2
La dérivée première de par rapport à est .
Étape 2
Étape 2.1
Définissez la dérivée première égale à .
Étape 2.2
Soustrayez des deux côtés de l’équation.
Étape 2.3
Pour résoudre , réécrivez l’équation en utilisant les propriétés des logarithmes.
Étape 2.4
Réécrivez en forme exponentielle en utilisant la définition d’un logarithme. Si et sont des nombres réels positifs et , alors est équivalent à .
Étape 2.5
Résolvez .
Étape 2.5.1
Réécrivez l’équation comme .
Étape 2.5.2
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 3
Étape 3.1
Définissez l’argument dans inférieur ou égal à pour déterminer où l’expression est indéfinie.
Étape 3.2
L’équation est indéfinie là où le dénominateur est égal à , l’argument d’une racine carrée est inférieur à ou l’argument d’un logarithme est inférieur ou égal à .
Étape 4
Étape 4.1
Évaluez sur .
Étape 4.1.1
Remplacez par .
Étape 4.1.2
Simplifiez
Étape 4.1.2.1
Réécrivez comme .
Étape 4.1.2.2
Réécrivez comme .
Étape 4.1.2.3
Utilisez les règles des logarithmes pour retirer de l’exposant.
Étape 4.1.2.4
Le logarithme naturel de est .
Étape 4.1.2.5
Multipliez par .
Étape 4.1.2.6
Le logarithme naturel de est .
Étape 4.1.2.7
Soustrayez de .
Étape 4.1.2.8
Associez et .
Étape 4.1.2.9
Placez le signe moins devant la fraction.
Étape 4.2
Évaluez sur .
Étape 4.2.1
Remplacez par .
Étape 4.2.2
Le logarithme naturel de zéro est indéfini.
Indéfini
Indéfini
Étape 4.3
Indiquez tous les points.
Étape 5