Entrer un problème...
Calcul infinitésimal Exemples
,
Étape 1
Étape 1.1
Différenciez les deux côtés de l’équation.
Étape 1.2
Différenciez le côté gauche de l’équation.
Étape 1.2.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.2.2
Évaluez .
Étape 1.2.2.1
Différenciez en utilisant la règle d’enchaînement, qui indique que est où et .
Étape 1.2.2.1.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 1.2.2.1.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.2.2.1.3
Remplacez toutes les occurrences de par .
Étape 1.2.2.2
Réécrivez comme .
Étape 1.2.3
Évaluez .
Étape 1.2.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.2.3.2
Différenciez en utilisant la règle d’enchaînement, qui indique que est où et .
Étape 1.2.3.2.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 1.2.3.2.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.2.3.2.3
Remplacez toutes les occurrences de par .
Étape 1.2.3.3
Réécrivez comme .
Étape 1.2.3.4
Multipliez par .
Étape 1.3
Différenciez le côté droit de l’équation.
Étape 1.3.1
Différenciez.
Étape 1.3.1.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.3.1.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.3.2
Évaluez .
Étape 1.3.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.3.2.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.3.2.3
Multipliez par .
Étape 1.4
Réformez l’équation en définissant le côté gauche égal au côté droit.
Étape 1.5
Résolvez .
Étape 1.5.1
Factorisez à partir de .
Étape 1.5.1.1
Factorisez à partir de .
Étape 1.5.1.2
Factorisez à partir de .
Étape 1.5.1.3
Factorisez à partir de .
Étape 1.5.2
Divisez chaque terme dans par et simplifiez.
Étape 1.5.2.1
Divisez chaque terme dans par .
Étape 1.5.2.2
Simplifiez le côté gauche.
Étape 1.5.2.2.1
Annulez le facteur commun de .
Étape 1.5.2.2.1.1
Annulez le facteur commun.
Étape 1.5.2.2.1.2
Réécrivez l’expression.
Étape 1.5.2.2.2
Annulez le facteur commun de .
Étape 1.5.2.2.2.1
Annulez le facteur commun.
Étape 1.5.2.2.2.2
Réécrivez l’expression.
Étape 1.5.2.2.3
Annulez le facteur commun de .
Étape 1.5.2.2.3.1
Annulez le facteur commun.
Étape 1.5.2.2.3.2
Divisez par .
Étape 1.5.2.3
Simplifiez le côté droit.
Étape 1.5.2.3.1
Simplifiez chaque terme.
Étape 1.5.2.3.1.1
Annulez le facteur commun de .
Étape 1.5.2.3.1.1.1
Annulez le facteur commun.
Étape 1.5.2.3.1.1.2
Réécrivez l’expression.
Étape 1.5.2.3.1.2
Annulez le facteur commun à et .
Étape 1.5.2.3.1.2.1
Factorisez à partir de .
Étape 1.5.2.3.1.2.2
Annulez les facteurs communs.
Étape 1.5.2.3.1.2.2.1
Factorisez à partir de .
Étape 1.5.2.3.1.2.2.2
Annulez le facteur commun.
Étape 1.5.2.3.1.2.2.3
Réécrivez l’expression.
Étape 1.5.2.3.1.3
Placez le signe moins devant la fraction.
Étape 1.6
Remplacez par.
Étape 1.7
Évaluez sur sur .
Étape 1.7.1
Remplacez la variable par dans l’expression.
Étape 1.7.2
Remplacez la variable par dans l’expression.
Étape 1.7.3
Simplifiez chaque terme.
Étape 1.7.3.1
Élevez à la puissance .
Étape 1.7.3.2
Simplifiez le dénominateur.
Étape 1.7.3.2.1
Élevez à la puissance .
Étape 1.7.3.2.2
Soustrayez de .
Étape 1.7.3.3
Multipliez par .
Étape 1.7.3.4
Placez le signe moins devant la fraction.
Étape 1.7.3.5
Multipliez par .
Étape 1.7.3.6
Multipliez par .
Étape 1.7.3.7
Simplifiez le dénominateur.
Étape 1.7.3.7.1
Élevez à la puissance .
Étape 1.7.3.7.2
Soustrayez de .
Étape 1.7.3.8
Multipliez par .
Étape 1.7.3.9
Placez le signe moins devant la fraction.
Étape 1.7.3.10
Multipliez .
Étape 1.7.3.10.1
Multipliez par .
Étape 1.7.3.10.2
Multipliez par .
Étape 1.7.4
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 1.7.5
Écrivez chaque expression avec un dénominateur commun , en multipliant chacun par un facteur approprié de .
Étape 1.7.5.1
Multipliez par .
Étape 1.7.5.2
Multipliez par .
Étape 1.7.6
Associez les numérateurs sur le dénominateur commun.
Étape 1.7.7
Simplifiez le numérateur.
Étape 1.7.7.1
Multipliez par .
Étape 1.7.7.2
Additionnez et .
Étape 1.7.8
Placez le signe moins devant la fraction.
Étape 2
Étape 2.1
Utilisez la pente et un point donné, tel que , pour remplacer et dans la forme point-pente , qui est dérivée de l’équation de la pente .
Étape 2.2
Simplifiez l’équation et conservez-la en forme point-pente.
Étape 2.3
Résolvez .
Étape 2.3.1
Simplifiez .
Étape 2.3.1.1
Réécrivez.
Étape 2.3.1.2
Simplifiez en ajoutant des zéros.
Étape 2.3.1.3
Appliquez la propriété distributive.
Étape 2.3.1.4
Associez et .
Étape 2.3.1.5
Multipliez .
Étape 2.3.1.5.1
Multipliez par .
Étape 2.3.1.5.2
Associez et .
Étape 2.3.1.5.3
Multipliez par .
Étape 2.3.1.6
Simplifiez chaque terme.
Étape 2.3.1.6.1
Déplacez à gauche de .
Étape 2.3.1.6.2
Placez le signe moins devant la fraction.
Étape 2.3.2
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Étape 2.3.2.1
Ajoutez aux deux côtés de l’équation.
Étape 2.3.2.2
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 2.3.2.3
Associez et .
Étape 2.3.2.4
Associez les numérateurs sur le dénominateur commun.
Étape 2.3.2.5
Simplifiez le numérateur.
Étape 2.3.2.5.1
Multipliez par .
Étape 2.3.2.5.2
Additionnez et .
Étape 2.3.2.6
Placez le signe moins devant la fraction.
Étape 2.3.3
Écrivez en forme .
Étape 2.3.3.1
Remettez les termes dans l’ordre.
Étape 2.3.3.2
Supprimez les parenthèses.
Étape 3